, Volume 60, Issue 1, pp 15–22 | Cite as

The origin of the membrane convolute in degranulating platelets

A comparative study of normal and “gray” platelets
  • E. Morgenstern
  • H. Patscheke
  • G. Mathieu
Original article


Thrombin-stimulated normal platelets contain a membrane system of dilated channels with openings to the exterior. Whether these membranes originate from the surface connected system (SCS), the α-granules or internalized portions of the plasmalemma has not yet been defined. The present study traces in series of ultrathin sections the rearrangement of these membranes during shape change, degranulation and internalization of surface membranes in washed normal and “gray” platelets upon the stimulation with thrombin (1 IU/ml). Cationized ferritin (CF) was used as a surface marker in order to recognize internalized portions of the plasmalemma. Within the first seconds after stimulation, both normal and gray platelets changed their shape by extrusion of the SCS membranes. Simultaneously they started to internalize surface membrane and formed surface membrane invaginations closely attached to the outer rim of the cytoskeletal sphere which developed during the internal contraction. CF was internalized in these invaginations. CF was not observed within the system of dilated channels of stimulated platelets, however. Thrombin-stimulated gray platelets showed a markedly reduced number of dilated channels or none at all. This observation may be due to the fact “gray” platelets are deficient in α-granules. It is concluded that the dilated system of membranes in degranulated normal platelets originates from membranes of the α-granules which have performed compound exocytosis.

Key words

Blood platelets Exocytosis Gray platelet syndrome Membrane internalization Thrombin stimulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behnke O (1987) Surface membrane clearing of receptorligand complexes in human blood platelets. J Cell Sci 87: 465–472Google Scholar
  2. 2.
    Berman CL, Yeo EL, Wencel-Drake JD, Furie BC, Ginsberg MH, Furie B (1986) A platelet α-granule membrane protein that is associated with the plasma membrane after activation. J Clin Invest 78: 130–137Google Scholar
  3. 3.
    Berndt MC, Castaldi PA, Gordon S, Halley H, McPherson VJ (1983) Morphological and biochemical confirmation of gray platelet syndrome in two siblings. Aust N Z J Med 13: 387–390Google Scholar
  4. 4.
    Cramer EM, Vainchenker W, Vinci G, Guichard J, Breton-Gorius J (1985) Gray platelet syndrome: Immunoelectron microscopic localization of fibrinogen and von Willebrand Factor in platelets and megakaryocytes. Blood 66: 1309–1316Google Scholar
  5. 5.
    Dierichs R, Patscheke H (1983) Alterations in the cytoskeleton of platelets by stimulation with polycationic ferritin (CF), Thromb Haemost 50: 128Google Scholar
  6. 6.
    Frojmovic MM, Milton JG (1982) Human platelet size, shape and related functions in health and disease. Physiol Rev 62: 185–261Google Scholar
  7. 7.
    Frojmovic MM, Milton JG (1983) Physical, chemical and functional changes folowing platelet activation in normal and “giant” platelets. Blood Cells 9: 359–382Google Scholar
  8. 8.
    Hirano H, Kawakami H (1982) Redistribution of surfacebound ligands in blood platelets as revealed by electron microscopy. Acta Haemat Jpn 45: 1335–1345Google Scholar
  9. 9.
    Kawakami H, Hirano H (1986) Rearrangement of the opencanalicular system of the human blood platelet after incorporation of surface-bound ligands. Cell Tissue Res 245: 465–469Google Scholar
  10. 10.
    Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230: 25–32Google Scholar
  11. 11.
    Köhler M, Hellstern P, Morgenstern E, Mueller-Eckhardt, C, Berberich R, Meiser RJ, Scheffler P, Wenzel E (1985) Gray platelet syndrome: Selective α-granule deficiency and thrombocytopenia due to increased platelet turnover. Blut 50: 331–340Google Scholar
  12. 12.
    Levy-Toledano S, Caen JP, Breton-Gorius J, Rendu F, Cywiner-Golenzer C, Dupuy E, Legrand Y, Maclouf J (1981) Gray platelet syndrome: α-granule deficiency. J Lab Clin Med 98: 831–848Google Scholar
  13. 13.
    Maas J (1981) Morphometrische Untersuchungen zur Ultrastruktur von Blutplättchen unter dem Einfluß unterschiedlicher Präparationsmethoden sowie bei einem genetisch bedingten Enzymdefekt (Lesch-Nyhan-Syndrom). Dissert, Univ SaraviensisGoogle Scholar
  14. 14.
    Milton JG, Frojmovic MM (1979) Invaginated plasma membrane of human platelets: evagination and measurement in normal and “giant” platelets. J Lab Clin Med 93: 162–198Google Scholar
  15. 15.
    Morgenstern E, Edelmann L (1989) Analysis of dynamic cell processes by rapid freezing and freeze substitution. In: Plattner H (ed) Electron microscopic analysis of subcellular dynamics. CRC Press, Boca Raton, USA (in press)Google Scholar
  16. 16.
    Morgenstern E, Kho A (1977) Morphometrische Untersuchungen an Blutplättchen. Veränderungen der Plättchenstruktur bei Pseudopodienbildung und Aggregation. Cytobiologie 15: 233–249Google Scholar
  17. 17.
    Morgenstern E, Reimers H-J (1984) The platelet contacts during aggregation. Blut 48: 81–90Google Scholar
  18. 18.
    Morgenstern E, Edelmann L, Reimers H-J, Miyashita C, Haurand M (1985) Fibrinogen distribution on surfaces and in organelles of ADP stimulated human blood platelets. Eur J Cell Biol 38: 292–300Google Scholar
  19. 19.
    Morgenstern E, Neumann K, Patscheke H (1987) The exocytosis of human blood platelets. A fast freeze-substitution analysis. Eur J Cell Biol 43: 273–282.Google Scholar
  20. 20.
    Patscheke H (1981) Shape and functional properties of human platelets washed with acid citrate. Haemostasis 10: 14–27Google Scholar
  21. 21.
    Patscheke H, Dierichs R (1986) Surface binding and platelet-activating and agglutinating effects of polycationic ferritin (CF). Thromb Haemost 50: 165Google Scholar
  22. 22.
    Patscheke H, Mathieu G (1987) Monitoring of the platelet α-granule secretion in the aggregation. Thromb Haemost 58: 188Google Scholar
  23. 23.
    Raccuglia G (1971) Gray platelet syndrome. Am J Med 51: 820–828Google Scholar
  24. 24.
    Rosa J-P, George JN, Bainton DF, Nurden AT, Cean JP, McEver RP (1987) Gray platelet syndrome. J Clin Invest 80: 1138–1146Google Scholar
  25. 25.
    Ruf A, Morgenstern E, Janzarik H, Lüscher EF (1986) Morphology of the interaction of collagen fibrils with normal human platelets and thrombasthenic platelets. Thromb Res 44: 477–487Google Scholar
  26. 26.
    Santoso S, Zimmermann U, Neppert J, Mueller-Eckhardt C (1986) Receptor patching and capping of platelet membranes induced by monoclonal antibodies. Blood 67: 343–349Google Scholar
  27. 27.
    Stahl K, Themann H, Dame WR (1978) Ultrastructural morphometric investigations on normal human platelets. Haemostasis 7: 242–251Google Scholar
  28. 28.
    Stenberg PE, McEver RP, Shuman MA, Jaques YV, Bainton DF (1985) A α-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 101: 880–886Google Scholar
  29. 29.
    White JG (1984) The secretory process in platelets. In: Cantin M (ed) Cell biology of the secretory process. S. Karger, Basel, pp 546–569Google Scholar
  30. 30.
    White JG (1979) Ultrastructural studies of the gray platelet syndrome. Am J Pathol 95: 45–462Google Scholar
  31. 31.
    White JG, Krumwiede M (1987) Further studies of the secretory pathway in thrombin-stimulated human platelets. Blood 69: 1196–1203Google Scholar
  32. 32.
    Wurzinger LJ, Wolf M, Langen H (1987) Vergleichende morphometrische und funktionelle Untersuchungen der Thrombozyten von Mensch und Schaf. Verh Anat Ges 81: 781–782Google Scholar
  33. 33.
    Yamazaki H, Suzuki H, Yamamoto N, Tanoue K (1984) Electron microscopic observations on platelet aggregation induced by cationized ferritin. Blood 63: 439–447Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • E. Morgenstern
    • 1
  • H. Patscheke
    • 2
  • G. Mathieu
    • 2
  1. 1.Medizinische BiologieUniversität des SaarlandesHomburg/SaarFederal Republic of Germany
  2. 2.Institut für Klinische Chemie, Klinikum MannheimUniversität HeidelbergMannheimFederal Republic of Germany

Personalised recommendations