Skip to main content
Log in

Molecular epidemiology for local outbreaks of methicillin resistantStaphylococcus aureus (MRSA)

The need for several methods

  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Subtyping isolates may be useful for epidemiological studies of methicillin-resistant-Staphylococcus aureus (MRSA) outbreaks. Among subtyping methods, DNA-based techniques have been applied very effectively for this purpose. An outbreak of MRSA infections took place in one hospital in Barcelona early during 1991. From the beginning of the outbreak to December 92, 70 MRSA isolates from different patients and sources were collected. All strains were evaluated by restriction endonuclease analysis of plasmid DNA (REAP) and macrorestriction endonuclease analysis of genomic DNA usingSma I and pulsed-field-gel-electrophoresis (PFGE). Plasmid screening and REAP usingHind III demonstrated two plasmid subtypes: subtype A showing a large plasmid, and subtype B showing the same large plasmid plus a smaller one. Subtypes A and B corresponded to the more recent and older isolates, respectively, suggesting the loss of the small plasmid during the epidemic. PFGE usingSma I displayed two closely related profiles (PFGE subtype A and A'; CS=0.90). These subtypes were different from those subtypes exhibited from 4 methicillin-susceptible-Staphylococcusaureus (MSSA) isolates from the same hospital and from 2 epidemiologically unrelated MRSA isolates. Almost all isolates showing PFGE subtype A preceded those isolates showing PFGE subtype A'. This fact and the similarity between both subtypes suggested minor chromosomal DNA rearrangement during the outbreak from a unique strain. While PFGE usingSma I is a useful tool in evaluation of clonal dissemination, our data suggest epidemic or local outbreaks may need several methods to best delineate the source and spread of MRSA strains. The reproducibility and discriminatory power of REAP makes it a useful adjunct in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archer GL, Mayhall CG. Comparison of epidemiological markers used in the investigation of an outbreak of methicillin-resistantStaphylococcus aureus infections. J Clin Microbiol 1983; 18: 395–399.

    Google Scholar 

  2. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized disk method. Am J Clin Pathol 1966; 45: 493–496.

    Google Scholar 

  3. Blair JE & Williams REO. Phage typing ofStaphylococcus. Bull WHO 1961; 24: 771–784.

    Google Scholar 

  4. Boyce JM. Methicillin-resistantStaphylococcus aureus in hospitals and long-term care facilities: microbiology, epidemiology, and preventive measures. Infect Control Hosp Epidemiol 1992; 13: 725–737.

    Google Scholar 

  5. Boyce JM, Causey WA. Increasing occurrence of methicillin-resistantStaphylococcus aureus in the United States. Infect Control 1982; 3: 377–383.

    Google Scholar 

  6. Bradley JM, Noone P, Townsend DE, Grubb WB. Methicillin-resistantStaphylococcus aureus in a London hospital. Lancet 1985 (i): 1493–1495.

  7. Branger C, Goullet P. Genetic heterogeneity in methicillin-resistant strains ofStaphylococcus aureus revealed by esterase electrophoretic polymorphism. J Hosp Infect 1989; 14: 125–134.

    Google Scholar 

  8. Branger C, Goullet P, Boutonnier A, Fournier JM. Correlation between esterase electrophoretic types and capsular polysaccharide types 5 and 8 among methicillin-susceptible and methicillin-resistant strains ofStaphylococcus aureus. J Clin Microbiol 1990; 28: 150–151.

    Google Scholar 

  9. Carles-Neurit MJ, Christophle B, Broche S, Gouby A, Bouziges N, Ramuz M. DNA polymorphisms in methicillin-susceptible and methicillin-resistant strains ofStaphylococcus aureus. J Clin Microbiol 1992; 30: 2092–2096.

    Google Scholar 

  10. Costas M, Cookson MD, Talsania HG, Owen RJ. Numerical analysis of electrophoretic protein patterns of methicillin-resistantStaphylococcus aureus. J Clin Microbiol 1989; 28: 426–429.

    Google Scholar 

  11. Duckworth G. Revised guidelines for the control of epidemic methicillin-resistantStaphylococcus aureus. Working party report of Hospital Infection Society and British Society for Antimicrobial Chemotherapy. J Hosp Infect 1990; 16: 351–377.

    Google Scholar 

  12. Goering RV, Duensing TD. Rapid field inversion gel electrophoresis in combination with an rRNA gene probe in the epidemiological evaluation of staphylococci. J Clin Microbiol 1990; 8: 426–429.

    Google Scholar 

  13. Hall LMC, Jordens JZ, Wang F. Methicillin-resistantStaphylococcus aureus from China characterized by digestion of total DNA with restriction enzymes. Epidemiol Infect 1989; 103: 183–192.

    Google Scholar 

  14. Harstein AI, Morthland VH, Eng S, Archer GL, Rashad A. Restriction enzyme analysis of plasmid DNA and bacteriophage typing of pairedStaphylococcus aureus blood cultures isolates. J Clin Microbiol 1989; 27: 1874–1879.

    Google Scholar 

  15. Ichiyama S, Ohta M, Shimokata K, Kato N, Takeuchi J. Genomic DNA fingerprinting by pulsed field electrophoresis as an epidemiological marker for study of nosocomial infections caused by methicillin-resistantStaphylococcus aureus. J Clin Microbiol 1991; 29: 2690–2695.

    Google Scholar 

  16. Jordens JZ, Hall LM. Characterization of methicillin-resistantStaphylococcus aureus isolates by restriction endonuclease digestion of chromosomal DNA. J Med Microbiol 1988; 27: 117–123.

    Google Scholar 

  17. Lacey RW, Grinsted J. Genetic analysis of methicillin-resistant strains ofStaphylococcus aureus; evidence for their evolution from a single clone. J Med Microbiol 1973; 6: 511–526.

    Google Scholar 

  18. Morgan MG, Harte-Barry MJ. Methicillin-resistantStaphylococcus aureus: a ten year survey in a Dublin hospital. J Hosp Infect 1989; 14: 357–362.

    Google Scholar 

  19. Mulligan ME, Arbeit RD. Epidemiologic and clinical utility of typing systems for differentiating among strains of methicillin-resistantStaphylococcus aureus. Infect Control Hosp Epidemiol 1991; 12: 23–28.

    Google Scholar 

  20. Mulligan ME, Kwok RY, Citron DM, John Jr JF, Smith PB. Immunoblots, antimicrobial resistance, and bacteriophage typing of oxacillin-resistantStaphylococcus aureus. J Clin Microbiol 1988; 26: 2395–2401.

    Google Scholar 

  21. Pfaller MA, Wakefield DS, Hollis R, Fredrickson M, Evans E, Massanari RM. The clinical microbiology laboratory as an aid in infection control: the application of molecular techniques in epidemiologic studies of methicillin-resistantStaphylococcus aureus. Diag Microbiol Infect Dis 1991; 14: 209–217.

    Google Scholar 

  22. Preheim L, Pitcher D, Owen R, Cookson B. Typing of methicillin-resistant and susceptibleStaphylococcus aureus strains by ribosomal RNA gene restriction patterns using a biotinylated probe. Eur J Clin Microbiol Infect Dis 1991; 10: 428–436.

    Google Scholar 

  23. Prevost G, Pottecher B, Dahlet M, Bientz M, Mantz JM, Piemont Y. Pulsed-field electrophoresis as a new epidemiological tool for monitoring methicillin-resistantStaphylococcus aureus in an intensive care unit. J Hosp Infect 1991; 17: 255–269.

    Google Scholar 

  24. Rodriguez CM. Evolucion de la resistencia a antimicrobianos deStaphylococcus aislados en hospitales espanoles. Enf Infect y Microbiol Clin 1992; 10: 24–29.

    Google Scholar 

  25. Schlichting C, Branger C, Fournier JM, White W, Boutonnier A, Wolz C, Goullet P, Doring G. Typing ofStaphylococcus aureus by Pulsed-Field Gel electrophoresis, zymotyping, capsular typing, and phage typing: resolution of clonal relationships. J Clin Microbiol 1993; 31: 227–232.

    Google Scholar 

  26. Struelens MJ, Deplano A, Godard C, Maes N, Serruys E. Epidemiologic typing and delineation of genetic relatedness of methicillin-resistantStaphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed field gel electrophoresis. J Clin Microbiol 1992; 30: 2599–2605.

    Google Scholar 

  27. Townsend DE, Ashdown S, Bolton S, Grubb SW. The use of cetyltrimethylammonium bromide for the rapid isolation fromStaphylococcus aureus of relaxable and non-relaxable plasmid DNA suitable for in vitro manipulation. Lett Appl Microbiol 1985; 1: 87–94.

    Google Scholar 

  28. Trilla A, Nettleman MD, Hollis RJ, Fredrickson M, Wenzel RP, Pfaller MA. Restriction endonuclease analysis of plasmid DNA from methicillin-resistantStaphylococcus aureus: clinical application over a three-year period. Infect Control Hosp Epidemiol 1993; 14: 29–35.

    Google Scholar 

  29. Wanger AR, Morris SL, Ericsson C, Singh KV, Larocco MT. Latex agglutination-negative methicillin-resistantStaphylococcus aureus recovered from neonates: epidemiological features and comparison of typing methods. J Clin Microbiol 1992; 30: 2583–2588.

    Google Scholar 

  30. Zucarelli AJ, Roy I, Harding GP, Couperus JJ. Diversity and stability of restriction enzyme profiles of plasmid DNA from methicillin-resistantStaphylococcus aureus. J Clin Microbiol 1990; 28: 97–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabria-Leal, M., Morthland, V.H., Pedro-Botet, M.L. et al. Molecular epidemiology for local outbreaks of methicillin resistantStaphylococcus aureus (MRSA). Eur J Epidemiol 10, 325–330 (1994). https://doi.org/10.1007/BF01719357

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01719357

Key words

Navigation