Skip to main content
Log in

Dependence of the parity-condition parameter on the combat-intensity parameter for Lanchester-type equations of modern warfare

  • Theoretical Paper
  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Summary

This paper studies the parametric dependence of battle outcome (in particular, force annihilation) for combat between two homogeneous forces modelled by Lanchester-type equations of modern warfare with time-dependent attrition-rate coefficients. Force-annihilation prediction has been shown to depend on a so-called parity-condition parameter, which depends on only the attrition-rate coefficients. New important results are given on how the parity-condition parameter depends on the intensity of combat and the relative fire effectiveness of the combatants. Previous analytical results of the author are shown to apply to a much wider class of attrition-rate coefficients. These new results allow a wide class of Lanchester-type equations of modern warfare with temporal variations in fire effectiveness to be studied almost as easily as Lanchester's classic constant-coefficient model.

Zusammenfassung

Diese Arbeit untersucht die Parameter-Abhängigkeit von Ergebnissen kriegerischer Auseinandersetzungen zweier homogener Gegner (insbesondere Vernichtung eingesetzter Kräfte), die mit Gleichungen der Lanchester-Theorie mit zeitabhängigen Verlustraten modelliert werden. Es wurde gezeigt, daß die Vorhersage der Vernichtung von Kräften von sogenannten Paritätsbedingungen nur von Verlustraten abhängen. Neue wichtige Ergebnisse geben Auskunft, wie diese Paritätsbedingungen von der Kampfintensität und der relativen Feuereffektivität der Gegner abhängen. Bisherige analytische Ergebnisse des Autors können Anwendung in einer viel umfangreicheren Art von Verlustraten finden. Diese neuen Ergebnisse erlauben es, daß eine umfangreiche Art von Gleichungen der LanchesterTheorie moderner Kriegsführung mit zeitlicher Feuereffektivitätsveränderung beinahe so leicht untersucht werden können, wie das klassische Modell von Lanchester mit konstanter Verlustrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bieberbach L (1965) Theorie der gewöhnlichen Differentialgleichungen, 2. Auflage. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  2. Bonder S (1965) A theory for weapon systems analysis. In: Proceedings of the Fourth Annual US Army Operations Research Symposium, Redstone Arsenal, Alabama, pp 111–128

  3. Bonder S (1967) The Lanchester attritionrate coefficient. Oper Res 15:221–232

    Google Scholar 

  4. Bonder S (1970) The mean Lanchester attrition rate. Oper Res 18: 179–181

    Google Scholar 

  5. Bonder S (1971) Systems analysis: A purely intellectual activity. Mil Rev 51, no. 2: 14–23

    Google Scholar 

  6. Bonder S, Farrell RL (eds) (1970) Development of models for defense systems planning. Report No. SRL 2147 TR 70-2 (U), Systems Research Laboratory, The University of Michigan, Ann Arbor, Michigan

    Google Scholar 

  7. Bostwick SP, Brandi FX, Burnham CA, Hurt JJ (1974) The interface between DYNTACS-X and Bonder-IUA. In: Proceedings of the Thirteenth Annual U.S. Army Operations Research Symposium, Fort Lee, Virginia, pp 494-502

  8. Clark GM (1969) The combat analysis model. Ph. D. Thesis. The Ohio State University, Columbus, Ohio

    Google Scholar 

  9. Dolansky L (1964) Present state of the Lanchester theory of combat. Oper Res 12: 344–358

    Google Scholar 

  10. Farrell RL (1975) VECTOR 1 and BATTLE: Two versions of a high-resolution ground and air theater campaign model. In: Huber RK, Jones LF, Reine E (eds) Military strategy and tactics. Plenum Press, New York, pp 233–241

    Google Scholar 

  11. Huber RK, Jones LF, Reine E (eds) (1975) Military strategy and tactics. Plenum Press, New York

    Google Scholar 

  12. Kamke E (1944) Differentialgleichungen, Lösungsmethoden und Lösungen, Band 1, Gewöhnliche Differentialgleichungen, 3. Aufl Akademische Verlagsgesellschaft, Leipzig (reprinted: 1971 Chelsea, New York)

    Google Scholar 

  13. Lanchester FW (1914) Aircraft in warfare: The dawn of the fourth arm-No. V, the principle of concentration. Engineering 98:422–423 (reprinted: 1956) in: Newman J (ed) The world of mathematics, Vol. IV.: Simon and Schuster, New York, pp 2138–2148

    Google Scholar 

  14. Schwarz HA (1872) Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. J. Reine Angew. Math. 75:292–335 (= Ges. Abh. Bd. 2, S. 211–259)

    Google Scholar 

  15. Taylor JG (1974) Solving Lanchester-type equations for “modern warfare“ with variable coefficients. Oper Res 22:756–770

    Google Scholar 

  16. Taylor JG (1979) Recent developments in the Lanchester theory of combat. In: Haley KB (ed) Operational Research '78. Proceedings of the Eighth IFORS International Conference on Operational Research. North-Holland, Amsterdam, pp 773–806

    Google Scholar 

  17. Taylor JG (1979) Attrition modelling. In: Huber RK, Niemeyer K, Hofmann HW (eds) Operations-analytische Spiele für die Verteidigung. R. Oldenbourg, München, pp 139–189

    Google Scholar 

  18. Taylor JG (1979) Prediction of zero points of solutions to Lanchester-type differential combat equations for modern warfare. SIAM J Appl Math 36:438–456

    Google Scholar 

  19. Taylor JG (1980) Force-on-force attrition modelling. Military Applications Section of Operations Research Society of America, Arlington, Virginia

    Google Scholar 

  20. Taylor JG, Brown GG (1976) Canonical methods in the solution of variable-coefficient Lanchester-type equations of modern warfare. Oper Res 24:44–69

    Google Scholar 

  21. Taylor JG, Comstock C (1977) Force-annihilation conditions for variable-coefficient Lanchester-type equations of modern warfare. Nav Res Log Qu 24: 349–371

    Google Scholar 

  22. Taylor JG, Parry SH (1975) Force-ratio considerations for some Lanchester-type models of warfare. Oper Res 23:522 to 533

    Google Scholar 

  23. Wallis PR (1968) Recent developments in Lanchester theory. Oper Res Qu 19: 191–195

    Google Scholar 

  24. Weiss HK (1957) Lanchester-type models of warfare. In: Davies M, Eddison RJ, Page T (eds) Proceedings of the First International Conference on Operational Research. Operations Research Society of America, Baltimore, pp 82–98

    Google Scholar 

  25. Weiss HK (1959) Some differential games of tactical interest and the value of a supporting weapon system. Oper Res 7:180–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially supported by the U.S. Army Research Office, Durham, North Carolina, USA, under R & D Project No. 1L161102BH57-05 Math (funded with MIPR No. ARO 22-77) and partially by the Office of Naval Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J.G. Dependence of the parity-condition parameter on the combat-intensity parameter for Lanchester-type equations of modern warfare. OR Spektrum 1, 199–205 (1980). https://doi.org/10.1007/BF01719341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01719341

Keywords

Navigation