Skip to main content
Log in

A generalized permutation approach to job shop scheduling with genetic algorithms

  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Abstract

In order to sequence the tasks of a job shop problem (JSP) on a number of machines related to the technological machine order of jobs, a new representation technique — mathematically known as “permutation with repetition” is presented. The main advantage of this single chromosome representation is — in analogy to the permutation scheme of the traveling salesman problem (TSP) — that it cannot produce illegal operation sequences. As a consequence of the representation scheme a new crossover operator preserving the initial scheme structure of permutations with repetition will be sketched. Its behavior is similar to the well known Order-Crossover for simple permutation schemes. Actually theGOX operator for permutations with repetition arises from aGeneralisation ofOX. Computational experiments show, that GOX passes the information from a couple of parent solutions efficiently to offspring solutions. Together, the new representation and GOX support the cooperative aspect of genetic search for scheduling problems strongly.

Zusammenfassung

Im vorliegenden Beitrag wird ein neuer Ansatz zur genetischen Repräsentation des Maschinenbelegungsproblems vorgestellt. Der Ansatz basiert auf dem bekannten Konzept der Repräsentation von Rundreiseproblemen durch Permutationen. In Erweiterung dieses Konzepts werden „Permutationen mit Wiederholung“ zur Kodierung von Lösungen eingesetzt. Die zentrale Schwierigkeit vorangegangener Ansätze, nämlich die Behandlung unzulässiger Genotypen, entfällt vollständig. Permutationen mit Wiederholung repräsentieren grundsätzlich zulässige Lösungen des betrachteten Problems. Aus einer Generalisierung der permutationsbewahrenden Order-Crossover Technik (OX) wird der KreuzungsoperatorGOX (GeneralisiertesOX) für Permutationen mit Wiederholung abgeleitet. In einer Testreihe wird die mit dem neuen Konzept zu erreichende Lösungsgüte untersucht. Es zeigt sich, daß die kooperative Komponente der genetischen Suche durch die Repräsentation und ihren Kreuzungsoperator verstärkt wird. Ein einfacher genetischer Algorithmus erzielt Lösungsgüten, die zuvor nur von stark hybriden Algorithmen erreicht wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarts E, Laarhoven P van, Lenstra J, Ulder N (1994) A computational study of local search algorithms for job shop scheduling. ORSA J Comput 6:118–125

    Google Scholar 

  2. Applegate D, Cook W (1991) A computational study of the job-shop scheduling problem. ORSA J Comput 2:149–156

    Google Scholar 

  3. Bierwirth C, Kopfer H, Mattfeld D, Utecht T (1993) PARNET: Distributed realization of genetic algorithms in a workstation cluster. Symp on Applied Mathematical Programming and Modeling, Budapest, Preprints, pp 41–48

  4. Davis L (1985) Job shop scheduling with genetic algorithms. Proc of 1st Int Conf on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp 136–140

    Google Scholar 

  5. Dorndorf U, Pesch E (1995) Evolution based learning in a job shop scheduling environment. Comput Oper Res 22:25–40

    Google Scholar 

  6. French S (1982) Sequencing and scheduling — an introduction to the mathematics of the job-shop. John Wiley, New York

    Google Scholar 

  7. Mattfeld D, Kopfer H, Bierwirth C (1994) Control of parallel population dynamics by social-like behavior of GA-individuals. Proc of 3rd Int Workshop on Parallel Problem Solving from Natur. Springer, Berlin Heidelberg New York, pp 16–25

    Google Scholar 

  8. Nakano R, Yamada T (1991) Conventional genetic algorithm for job shop problems. Proc of 4th Int Conf on Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo, California, pp 474–479

    Google Scholar 

  9. Oliver I, Smith D, Holland J (1987) A study of permutation crossover operators on the traveling salesman problem. Proc of 2nd Int Conf on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp 224–230

    Google Scholar 

  10. Pesch E (1993) Machine learning by schedule decomposition. Working Paper, University of Limburg

  11. Storer R, Wu D, Vaccari R (1992) New search spaces for sequencing problems with application to job shop scheduling. Manag Sci 38:1495–1509

    Google Scholar 

  12. Syswerda G (1991) Schedule optimization using genetic algorithms. In: Davis L (ed) Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, pp 332–349

    Google Scholar 

  13. Whitley D, Starkweather T, Fuquay A (1989) Scheduling problems and traveling salesmen: the genetic edge recombination operator. Proc of 3rd Int Conf on Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo, California, pp 133–140

    Google Scholar 

  14. Yamada T, Nakano R (1992) A genetic algorithm applicable to large-scale job shop problems. Proc of 2nd Int Workshop on Parallel Problem Solving from Nature. North-Holland, Amsterdam, London, New York, pp 281–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (Project Parnet)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierwirth, C. A generalized permutation approach to job shop scheduling with genetic algorithms. OR Spektrum 17, 87–92 (1995). https://doi.org/10.1007/BF01719250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01719250

Key words

Schlüsselwörter

Navigation