Advertisement

Molecular Diversity

, Volume 2, Issue 1–2, pp 103–110 | Cite as

Screening chemical libraries for nucleic-acid-binding drugs by in vitro selection: A test case with lividomycin

  • Susan M. Lato
  • Andrew D. Ellington
Research Papers

Summary

Screening new drugs is a costly and time-consuming process. Identifying new targets for existing therapeutics is often a particularly effective avenue for drug development. We have investigated whether in vitro selection can be used for target acquisition. Aminoglycoside antibiotics are known to bind to and inactivate functional natural nucleic acids, such as ribosomal RNA. As an example of how new targets for aminoglycosides could be identified, a lividomycin aptamer was iteratively isolated from a random sequence pool. The consensus sequence of this and other anti-aminoglycoside aptamers was used as the basis for a comprehensive search of natural sequence databases. Surprisingly, a high degree of similarity was found between aptamers and genomic sequences from a variety of organisms. While many of the similarities found are in regions of unknown or nonessential function, some of the sequences are found in critical genes in pathogenic organisms.

Keywords

Aptamer In vitro selection Lividomycin Therapeutics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kauvar, L.M.,Affinity fingerprinting, Biotechnology, 13 (1995) 965–966.Google Scholar
  2. 2.
    Rinehart, K.L. and Shield, L.S.,Aminocyclitol antibiotics: An introduction, In Rinehart, K.L. and Suami, T. (Eds.) Aminocyclitol Antibiotics, American Chemical Society, Washington, DC, U.S.A., 1980, pp. 1–11.Google Scholar
  3. 3.
    Nielson, P.E.,Sequence-selective DNA recognition by synthetic ligands, Bioconj. Chem., 2 (1991) 1–12.Google Scholar
  4. 4.
    Ellington, A.D.,Aptamers achieve the desired recognition, Curr. Biol., 4 (1994) 427–429.Google Scholar
  5. 5.
    Lato, S.M., Boles, A.R. and Ellington, A.D.,In vitro selection of RNA lectins: Using combinatorial chemistry to interpret ribozyme evolution, Chem. Biol., 2 (1995) 291–303.Google Scholar
  6. 6.
    Wang, Y. and Rando, R.R.,Specific binding of aminoglycoside antibiotics to RNA, Chem. Biol., 2 (1995) 281–290.Google Scholar
  7. 7.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J.,Basic local alignment search tool, J. Mol. Biol., 215 (1990) 403–410.Google Scholar
  8. 8.
    Jaeger, J.A., Turner, D.H. and Zuker, M.,Predicting optimal and suboptimal secondary structures for RNA, Methods Enzymol., 183 (1989) 281–306.Google Scholar
  9. 9.
    Davies, J., Von Ahsen, U. and Schroeder, R.,Antibiotics and the RNA world: A role for low-molecular-weight effectors in biochemical evolution?, In Gesteland, R.F. and Atkins, J.F. (Eds.) The RNA World, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A., pp. 185–204.Google Scholar
  10. 10.
    Zapp, M., Stern, S. and Green, M.R.,Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production, Cell, 74 (1993) 969–978.Google Scholar
  11. 11.
    Ciccarelli, R.B., Winter, L.A., Lorenz, R., Harris, A.L., Crawford, A.C., Bailey, T.R., Singh, B., Hammarskjold, M.-L., Rekosh, D. and Hughes, J.V.,Inhibition of the cellular Rev-response and HIV-1 replication by 8-alkyl-2-(4-pyridyl)pyrido[2,3-d]pyrimidin-5 (8H)—ones, Antiviral Chem. Chemother., 5 (1994) 169–175.Google Scholar
  12. 12.
    Mrksich, M., Wade, W.S., Dwyer, T.J., Geierstanger, B.H., Wemmer, D.E. and Dervan, P.B.,Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin, Proc. Natl. Acad. Sci. USA, 89 (1992) 7586–7590.Google Scholar
  13. 13.
    Lown, J.W.,Targeting the DNA minor groove for control of biological function: Progress, challenges, and prospects, Chemtracts Org. Chem., 6 (1993) 205–237.Google Scholar
  14. 14.
    Famulok, M. and Szostak, J.W.,Stereospecific recognition of tryptophan agarose by in vitro selected RNA, J. Am. Chem. Soc., 114 (1992) 3990–3991.Google Scholar
  15. 15.
    Connell, G.J., Illangesekare, M. and Yarus, M.,Three small oligoribonucleotides with specific arginine binding sites, Biochemistry, 32 (1993) 5497–5502.Google Scholar
  16. 16.
    Sassanfar, M. and Szostak, J.W.,An RNA motif that binds ATP, Nature, 364 (1993) 550–553.Google Scholar
  17. 17.
    Lauhon, C.T. and Szostak, J.W.,RNA aptamers that bind flavin and nicotinamide redox cofactors, J. Am. Chem. Soc., 117 (1995) 1246–1257.Google Scholar
  18. 18.
    Jenison, R.D., Gill, S.C., Pardy, A. and Polisky, B.,High-resolution molecular discrimination by RNA, Science, 263 (1994) 1425–1429.Google Scholar
  19. 19.
    Conrad, R.C., Giver, L., Tian, Y. and Ellington, A.D.,In vitro selection of nucleic acid aptamers that bind proteins, Methods Enzymol., 267 (1996) 336–366.Google Scholar
  20. 20.
    Wallis, M.G., Von Ahsen, U., Schroeder, R. and Famulok, M.,A novel RNA motif for neomycin recognition, Chem. Biol., 2 (1995) 543–552.Google Scholar
  21. 21.
    Symensma, T.L., Giver, L., Zapp, M., Takle, G.B. and Ellington, A.D.,RNA aptamers selected to bind Human Immunodeficiency Virus Type 1 Rev in vitro are Rev-responsive in vivo, J. Virol., 70 (1996) 179–187.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1996

Authors and Affiliations

  • Susan M. Lato
    • 1
  • Andrew D. Ellington
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations