Skip to main content
Log in

Physical and genetic maps of the human herpesvirus 7 strain SB genome

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Human herpesvirus 7 (HHV-7) is a close relative of human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B) based on limited biologic and genetic data. In this work we describe physical and genetic maps for HHV-7 strain SB [HHV-7(SB)], which was obtained from the saliva of a healthy adult. The HHV-7(SB) genome length is approximately 144 kb by clamped homogeneous electric field gel electrophoresis and approximately 135 kb by summation of restriction endonuclease fragments. We constructed plasmid clones and PCR amplimers that span the HHV-7 genome, except for the genomic termini, and determined the maps of the restriction endonuclease cleavage sites forBamHI,PstI, andSacI. The HHV-7(SB) genome is composed of a single unique region of approximately 122 kb bounded at each end by a 6 kb direct repeat. Homologs to thirty-five herpesvirus genes were identified. The highest similarity was with the HHV-6 genes, with an average amino acid identity of 50%, followed by the human cytomegalovirus counterpart. The genomic and genetic maps indicated that the HHV-7 and HHV-6 genomes are colinear. There was no sequence variation in a segment of the gene encoding the DNA polymerase-associated factor homolog among six HHV-7 isolates, while the corresponding segment of the HHV-6A and HHV-6B counterparts differed by 4.6%. These data support previous observations that the closest genetic relatives of HHV-7 are betaherpesviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agulnick AD, Thompson JR, Iyengar S, Pearson G, Ablashi D, Ricciardi RP (1993) Identification of a DNA-binding protein of human herpesvirus 6, a putative DNA polymerase stimulatory factor. J Gen Virol 74: 1003–1009

    Google Scholar 

  2. Albrecht J-C, Nicholas J, Biller D, Cameron KR, Biesinger B, Newman C, Wittmann S, Craxton MA, Coleman H, Fleckenstein B, Hones RW (1992) Primary structure of the herpesvirus saimiri genome. J Virol 66: 5047–5058

    Google Scholar 

  3. Asano Y, Yoshikawa T, Suga S, Yazaki T, Hata T, Nagai T, Kajita Y, Ozaki T, Yoshida S (1989) Viremia and neutralizing antibody response in infants with exanthem subitum. J Pediatr 114: 535–539

    Google Scholar 

  4. Aubin JT, Collandre H, Candotti D, Ingrand D, Rouzioux C, Burgard M, Richard S, Huraux JM, Agut H (1991) Several groups among human herpesvirus 6 strains can be distinguished by Southern blotting and polymerase chain reaction. J Clin Microbiol 29: 367–372

    Google Scholar 

  5. Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C, Tuffnell PS, Barrell BG (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310: 207–211

    Google Scholar 

  6. Berneman ZN, Ablashi DV, Li G, Eger-Fletcher M, Reitz MS Jr, Hung CL, Brus I, Komaroff AL, Gallo RC (1992) Human herpesvirus 7 is a T-lymphotropic virus and is related to, but significantly different from, human herpesvirus 6 and human cytomegalovirus. Proc Natl Acad Sci USA 89: 10552–10556

    Google Scholar 

  7. Black JB, Durigon E, Kite-Powell K, de Souza L, Curli SP, Afonso Sardinha AM, Theobaldo M, Pellett PE (1996) HHV-6 and HHV-7 seroconversion in children clinically diagnosed with measles or rubella. Clin Infect Dis 23 (in press)

  8. Black JB, Inoue N, Kite-Powell K, Zaki S, Pellett PE (1993) Frequent isolation of human herpesvirus 7 from saliva. Virus Res 29: 91–98

    Google Scholar 

  9. Black JB, Schwarz TF, Patton JL, Kite-Powell K, Pellett PE, Wiersbitzky S, Bruns R, Muller C, Jager G, Stewart J (1996) Evaluation of immunoassays for detection of antibodies to human herpesvirus 7. Clin Diagn Lab Immunol 379–383

  10. Bloss TA, Sugden B (1994) Optimal lengths for DNAs encapsidated by Epstein-Barr virus. J Virol 68: 8217–8222

    Google Scholar 

  11. Cha Tai-A, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR (1996) Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70: 78–83

    Google Scholar 

  12. Chang CK, Balachandran N (1991) Identification, characterization, and sequence analysis of a cDNA encoding a phosphoprotein of human herpesvirus 6. J Virol 65: 2884–2894

    Google Scholar 

  13. Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison CA, Kouzarides T, Martignetti JA, Preddie E, Satchwell SC, Tomlinson P, Weston KM, Barrell BG (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154: 125–169

    Google Scholar 

  14. Clark DA, Freeland ML, Mackie LK, Jarrett RF, Onions DE (1993) Prevalence of antibody to human herpesvirus 7 by age. J Infect Dis 168: 251–252

    Google Scholar 

  15. Davison AJ, Scott JE (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67: 1759–1816

    Google Scholar 

  16. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395

    Google Scholar 

  17. DiLuca D, Mirandola P, Ravaioli T, Dolcetti R, Frigatti A, Bovenzi P, Sighinolfi L, Monini P, Cassai E (1995) Human herpesviruses 6 and 7 in salivary glands and shedding in saliva of healthy and human immunodeficiency virus positive individuals. J Med Virol 45: 462–468

    Google Scholar 

  18. Ertl PF, Powell KL (1992) Physical and functional interaction of human cytomegalovirus DNA polymerase and its accessory protein (ICP36) expressed in insect cells. J Virol 66: 4126–4133

    Google Scholar 

  19. Frenkel N, Schirmer EC, Wyatt LS, Katsafanas G, Roffman E, Danovich RM, June CH (1990) Isolation of a new herpesvirus from CD4 + T cells. Proc Natl Acad Sci USA 87: 748–752

    Google Scholar 

  20. Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, Efstathiou S, Craxton M, Macaulay HA (1995) The DNA sequence of human herpesvirus 6: structure, coding content, and genome evolution. Virology 209: 29–51

    Google Scholar 

  21. Hidaka Y, Liu Y, Yamamoto M, Mori R, Miyazaki C, Kusuhara K, Okada K, Ueda K (1993) Frequent isolation of human herpesvirus 7 from saliva samples. J Med Virol 40: 343–346

    Google Scholar 

  22. Hidaka Y, Okada K, Kusuhara K, Miyazaki C, Tokugawa K, Ueda K (1994) Exanthem subitum and human herpesvirus 7 infection. Pediatr Infect Dis 13: 1010–1011

    Google Scholar 

  23. Inoue N, Dambaugh TR, Rapp JC, Pellett PE (1994) Alphaherpesvirus origin-binding protein homolog encoded by human herpesvirus 6B, a betaherpesvirus, binds to nucleotide sequences that are similar to ori regions of alphaherpesviruses. J Virol 68: 4126–4136

    Google Scholar 

  24. Inoue N, Pellett PE (1995) Human herpesvirus 6B origin-binding protein: DNA-binding domain and consensus binding sequence. J Virol 69: 4619–4627

    Google Scholar 

  25. Lindquester GJ, Inoue N, Allen RD, Castelli JW, Stamey FR, Dambaugh TR, O'Brian JJ, Danovich RM, Frenkel N, Pellett PE (1996) Restriction endonuclease mapping and molecular cloning of the human herpesvirus 6 variant B strain Z29 genome. Arch Virol 141: 367–379

    Google Scholar 

  26. Lindquester GJ, O'Brian JJ, Anton ED, Greenamoyer CA, Pellett PE, Dambaugh TR (1997) Genetic content of a 20.9 kb segment of human herpesvirus 6B strain Z29 spanning the homologs of human herpesvirus 6A genes U40–57 and containing the origin of replication. Arch Virol 142 (in press), GenBank accession L16947

  27. Lindquester GJ, Pellett PE (1991) Properties of the human herpesvirus 6 strain Z29 genome: G + C content, length, and presence of variable-length directly repeated terminal sequence elements. Virology 182: 102–110

    Google Scholar 

  28. Lusso P, Secchiero P, Crowley RW, Garzino-Demo A, Berneman ZN, Gallo RC (1994) CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proc Natl Acad Sci USA 91: 3872–3876

    Google Scholar 

  29. Martin MED, Thomson BJ, Honess RW, Craxton MA, Gompels UA, Liu MY, Littler E, Arrand JR, Teo I, Jones MD (1991) The genome of human herpesvirus 6: maps of unit-length and concatemeric genomes for nine restriction endonucleases. J Gen Virol 72: 157–168

    Google Scholar 

  30. McGeoch DJ, Dairymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry IJ, Scott JE, Taylor P (1988) The complete DNA sequence of the long unique region of the genome of herpes simplex virus type 1. J Gen Virol 69: 1531–1574

    Google Scholar 

  31. Messerle M, Keil GM, Schineider K, Koszinowski UH (1992) Characterization of the murine cytomegalovirus genes encoding the major DNA-binding protein and the ICP18.5 homolog. Virology 191: 355–357

    Google Scholar 

  32. Mukai T, Isegawa Y, Yamanishi K (1995) Identification of the major capsid protein gene of human herpesvirus 7. Virus Res 37: 1–8

    Google Scholar 

  33. Nicholas J (1996) Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. Unpublished, GenBank accession U43400

  34. Pederson NE, Enquist LW (1989) The nucleotide sequence of pseudorabies virus gene similar to ICP18.5 of herpes simplex virus type 1. Nucleic Acids Res 17: 3597–3597

    Google Scholar 

  35. Pellett PE, Lindquester GJ, Feorino P, Lopez C (1990) Genomic heterogeneity of human herpesvirus 6 isolates. Adv Exp Med Biol 278: 9–18

    Google Scholar 

  36. Pruksananonda P, Hall CB, Insel RA, McIntyre K, Pellett PE, Long CE, Schnabel KC, Pincus PH, Stamey FR, Dambaugh TR, Stewart JA (1992) Primary human herpesvirus 6 infection in young children. N Engl J Med 326: 1445–1450

    Google Scholar 

  37. Roizman B, Sears AE (1993) Herpes simplex viruses and their replication. In: Roizman B, Whitley RJ, Lopez C (eds) The human herpesviruses. Raven Press, New York, pp 11–68

    Google Scholar 

  38. Secchiero P, Nicholas J, Deng H, Xiaopeng T, vanLoon N, Ruvolo VR, Berneman ZN, Reitz MS, Dewhurst S (1995) Identification of human telomeric repeat motifs at the genome termini of human herpesvirus 7: structural analysis and heterogeneity. J Virol 69: 8041–8045

    Google Scholar 

  39. Straus SE, Aulakh HS, Ruyechan WT, Hay J, Casey TA, Vande Woude GF, Owens J, Smith HA (1981) Structure of varicella-zoster virus DNA. J Virol 40: 516–525

    Google Scholar 

  40. Tait DR, Ward KN, Brown DWG, Miller E (1996) Measles and rubella misdiagnosed in infants as exanthem subitum (roseola infantum). Br Med J 312: 101–102

    Google Scholar 

  41. Takekoshi M, Ihara S, Tanaka S, Maeda-Takekoshi F, Watanabe Y (1987) A new human cytomegalovirus isolate has an invertible subsegment within its L component producing eight genome isomers. J Gen Virol 68: 765–776

    Google Scholar 

  42. Tanaka K, Kondo T, Torigoe S, Okada S, Mukai T, Yamanishi K (1994) Human herpesvirus 7: another causal agent for roseola (exanthem subitum). J Pediatr 125: 1–5

    Google Scholar 

  43. Torigoe S, Kumamoto T, Koide W, Taya K, Yamanishi K (1995) Clinical manifestations associated with human herpesvirus 7 infection. Arch Dis Child 72: 518–519

    Google Scholar 

  44. Wyatt LS, Frenkel N (1992) Human herpesvirus 7 is a constitutive inhabitant of adult human saliva. J Virol 66: 3 206–3 209

    Google Scholar 

  45. Wyatt LS, Rodriguez WJ, Balachandran N, Frenkel N (1991) Human herpesvirus 7: antigenic properties and prevalence in children and adults. J Virol 65: 6 260–6 265

    Google Scholar 

  46. Yasukawa M, Yakushijin Y, Furukawa M, Fujita S (1993) Specificity analysis of human CD4+ T-cell clones directed against human herpesvirus 6 (HHV-6), HHV-7, and human cytomegalovirus. J Virol 67: 6 259–6 264

    Google Scholar 

  47. Yoshikawa T, Asano Y, Kobayashi I, Nakashima T, Yazaki T, Suga S, Oazki T, Wyatt LS, Frenkel N (1993) Seroepidemiology of human herpesvirus 7 in healthy children and adults in Japan. J Med Virol 41: 319–323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, G., Black, J.B., Stamey, F.R. et al. Physical and genetic maps of the human herpesvirus 7 strain SB genome. Archives of Virology 141, 2387–2408 (1996). https://doi.org/10.1007/BF01718639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01718639

Keywords

Navigation