Klinische Wochenschrift

, Volume 67, Issue 17, pp 852–857 | Cite as

Peptide-dependent regulation of epithelial nephron functions

  • M. Horster
  • M. Sone
Article
  • 14 Downloads

Summary

It has become evident that the nephron is an important target organ of many of the regulatory peptides; this brief overview will not attempt to consider the vast amount of work on peptide-dependent kidney functions; instead, it will emphasize recent work directed towards understanding intracellular signal pathways between peptide ligand-receptor interaction and expression of physiological transport responses in renal epithelial cells. The awareness that peptide hormones of differing origin, e.g., intestinal and cardiac, share at least some of the signal steps in nephron cells, has stimulated work on nephron segmental analysis of receptor binding, of second messengers, of membrane G proteins, of protein phosphorylation, and of final membrane transport responses, such as peptide-dependent ion channel regulation. Peptides involved in cell growth and differentiation, e.g., growth factors, appear to act through part of the signal pathway shared by other peptides.

The peptides selected for the purpose of this review, then, are those that have been linked, by experimental evidence, to intracellular messenger systems in nephron epithelia.

Key words

Peptide hormones Nephron Intracellular messengers Renal epithelial cells Ion transport Water transport Renal growth Renal differentiation 

Abbreviations

PCT, PST, MTAL, CTAL, DCT, CCD, OMCD, IMCD [46]; cAMP

cyclic adenosine 3′,5′-monophosphate

cGMP

cyclic guanosine 3′,5′-monophosphate

DG

Diacylglycerol

GTP

Guanosine 5′-triphosphate

G protein

GTP/GDP-binding protein

PI

Phosphatidylinositol

PIP2

Phosphatidylinositol 4,5-bisphosphate

IP3

Inositol 1,4,5-trisphosphate

LLC-PK1

pig kidney cell line

MDCK

canine kidney cell line

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aboolian A, Nord EP (1988) Bradykinin increases cytosolic free [Ca2+] in proximal tubule cells. Am J Physiol 255:F486-F493Google Scholar
  2. 2.
    Baum M (1987) Insulin stimulates volume absorption in the rabbit proximal convoluted tubule. J Clin Invest 79:1104–1109Google Scholar
  3. 3.
    Beasley D, Dinarello CA, Cannon JG (1988) Interleukin-1 induces natriuresis in conscious rats: Role of renal prostaglandins. Kidney Int 33:1059–1065Google Scholar
  4. 4.
    Birnbaumer L, Codina J, Mattera R, Yatani A, Scherer N, Toro MJ, Brown AM (1987) Signal transduction by G proteins. Kidney Int 32 (S 23):S14-S37Google Scholar
  5. 5.
    Blazer-Yost BL, Cox M (1988) Insulin-like growth factor I stimulates renal epithelial Na+ transport. Am J Physiol 255:C413-C417Google Scholar
  6. 6.
    Bonventre JV, Weber PC, Gronich JH (1988) PAF and PDGF increase cytosolic [Ca2+] and phospholipase activity in mesangial cells. Am J Physiol 254:F87-F94Google Scholar
  7. 7.
    Bortz JD, Rotwein P, DeVol D, Bechtel PJ, Hansen VA, Hammerman MR (1988) Focal expression of insulin-like growth factor I in rat kidney collecting duct. J Cell Biol 107:811–819Google Scholar
  8. 8.
    Breyer MD, Jacobson HR, Breyer JA (1988) Epidermal growth factor inhibits the hydroosmotic effect of vasopressin in the isolated perfused rabbit cortical collecting tubule. J Clin Invest 82:1313–1320Google Scholar
  9. 9.
    Burnatowska-Hledin MA, Spielman WS (1989) Vasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. Stimulation of cytosolic free calcium and inositol phosphate production via coupling to a pertussis toxin substrate. J Clin Invest 83:84–89Google Scholar
  10. 10.
    Butlen D, Mistaqui M, Morel F (1987) Atrial natriuretic peptide receptors along the rat and rabbit nephrons:125I α-rat atrial natriuretic peptide binding in microsdissected glomeruli and tubules. Pflügers Arch 408:356–365Google Scholar
  11. 11.
    Cantiello H, Ausiello DF (1986) Atrial natriuretic factor and cGMP inhibit amiloride-sensitive Na transport in the cultured renal epithelial cell line LLC-PK. Biochem Biophys Res Comm 134:852–860Google Scholar
  12. 12.
    Chabardes D, Brick-Ghannam C, Montegut M, Siaume-Perez S (1988) Effect of PGE2 and α-adrenergic agonists on AVP-dependent cAMP levels in rabbit and rat CCT. Am J Physiol 255:F43-F48Google Scholar
  13. 13.
    Cottier C, Matter L, Weidmann P, Shaw S, Gnädinger MP (1988) Renal response to low-dose infusion of atrial natriuretic peptide in normal man. Kidney Int 34 (S25):S72-S78Google Scholar
  14. 14.
    Culpepper RM, Andreoli TE (1984) PGE2, forskolin and cholera toxin interactions in modulating NaCl transport in mouse mTALH. Am J Physiol 247:F784-F792Google Scholar
  15. 15.
    Dillingham MA, Kim JK, Horster MF, Anderson RJ (1984) Forskolin increases osmotic water permeability of rabbit cortical collecting tubule. J Membrane Biol 80:243–248Google Scholar
  16. 16.
    Dillingham MA, Anderson RJ (1986) Inhibition of vasopressin action by atrial natriuretic factor. Science 231:1572–1573Google Scholar
  17. 17.
    Dixon BS, Breckon R, Burke C, Anderson RJ (1988) Phorbol esters inhibit adenylate cyclase activity in cultured collecting tubular cells. Am J Physiol 254:C183-C191Google Scholar
  18. 18.
    Douglas JG (1987) Angiotensin receptor subtypes of the kidney cortex. Am J Physiol 253:F1-F7Google Scholar
  19. 19.
    Durham JH, Matons C, Brodsky WA (1987) Vasoactive intestinal peptide stimulates alkali secretion in turtle urinary bladder. Am J Physiol 252:C428-C435Google Scholar
  20. 20.
    Fine LG, Badre-Dezfooly B, Lowe AG, Hamzeh A, Wells J, Salehmoghaddam S (1985) Stimulation of Na/H antiport is an early event in hypertrophy of renal proximal tubular cells. Proc Natl Acad Sci USA 82:1736–1740Google Scholar
  21. 21.
    Fragin JA, Melmed S (1987) Relative increase in insulin-like growth factor I messenger ribonucleic acid levels in compensatory renal hypertrophy. Endocrinology 120:718–724Google Scholar
  22. 22.
    Gapstur SM, Homma S, Dousa TP (1988) cAMP-binding proteins in medullary tubules from rat kidney: effect of ADH. Am J Physiol 255:F292-F300Google Scholar
  23. 23.
    Goodyer PR, Kachra Z, Bell C, Rozen R (1988) Renal tubular cells are potential targets for epidermal growth factor. Am J Physiol 255:F1191-F1196Google Scholar
  24. 24.
    Griffiths NM, Chabardes D, Imbert-Teboul M, Siaume-Perez S, Morel F, Simmons NL (1988) Distribution of vasoactive intestinal peptide-sensitive adenylate cyclase activity along the rabbit nephron. Pflügers Arch 412:363–368Google Scholar
  25. 25.
    Grinstein S, Rotin D, Mason MJ (1989) Na/H exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochem Biophys Acta 988:73–97Google Scholar
  26. 26.
    Gunning ME, Ballermann BJ, Silva P, Brenner BM, Zeidel ML (1988) Characterization of ANP receptors in rabbit inner medullary collecting duct cells. Am J Physiol 255:F324-F330Google Scholar
  27. 27.
    Habenicht AJR, Goerig M, Grulich J, Rothe D, Gronwald R, Loth U, Schettler G, Kommerell B, Ross R (1985) Human platelet-derived growth factor stimulates prostaglandins din synthesis by activation and by rapid de novo synthesis of cyclooxygenase. J Clin Invest 75:1381–1387Google Scholar
  28. 28.
    Hammerman MR, Rogers S, Hansen VA, Gavin III JR (1984) Insulin stimulates Pi transport in brush border vesicles from proximal tubular segments. Am J Physiol 247:E616-E624Google Scholar
  29. 29.
    Hammerman MR, Gavin III JR (1986) Binding of IGF I and IGF I-stimulated phosphorylation in canine renal basolateral membranes. Am J Physiol 251:E32-E41Google Scholar
  30. 30.
    Hammerman MR, Rogers S (1987) Distribution of IGF receptors in the plasma membranes of proximal tubular cells. Am J Physiol 253:F841-F847Google Scholar
  31. 31.
    Handler JS (1988) Antidiuretic hormone moves membranes. Am J Physiol 255:F375-F382Google Scholar
  32. 32.
    Healy DP, Fanestil DD (1986) Lokalization of atrial natriuretic peptide binding sites within the rat kidney. Am J Physiol 250:F573-F578Google Scholar
  33. 33.
    Hebert SC, Reeves WB, Molony DA, Andreoli TE (1987) The medullary thick limb: Function and modulation of the single-effect multiplier. Kidney Int 31:580–588Google Scholar
  34. 34.
    Hellfritzsch M, Christensen EI, Sonne O (1986) Luminal uptake and intracellular transport of insulin in renal proximal tubules. Kidney Internat 29:983–988Google Scholar
  35. 35.
    Hession C, Decker JM, Sherblom AP, Kumar S, Yue CC, Mittaliano RJ, Tizard R, Kawashima E, Schmeissner U, Heletkey S, Pingchang Chow E, Burne CA, Shaw A, Muchmore AV (1987) Uromodulin (Tamm-Horsfall glycoprotein): A renal ligand for lymphokines. Science 237:1479–1484Google Scholar
  36. 36.
    Homma S, Gapstur SM, Yusufi ANK, Dousa TP (1988) In situ phosphorylation of proteins in MCTs microdissected from rat kidney. Am J Physiol 254:F512-F520Google Scholar
  37. 37.
    Horster MF, Stopp M (1986) Transport and metabolic functions in cultured renal tubule cells. Kidney Int 29:46–53Google Scholar
  38. 38.
    Horster MF, Schmolke M, Gleich R (1989) Expression of sodium pump activity and of transepithelial voltage induced by hormones in cultured cortical collecting tubule cells. Miner Electrolyte Metab 15:137–143Google Scholar
  39. 39.
    Ishikawa S-E, Okada K, Saito T (1988) Arginine vasopressin increases cellular free calcium concentration and adenosine 3′,5′-monophosphate production in rat renal papillary collecting tubule cells in culture. Endocrinology 123:1376–1384Google Scholar
  40. 40.
    Itoh K, Morimoto S, Shiraishi T, Taniguchi K, Onishi T, Kumahara Y (1988) Increase of (Ca+Mg)-ATPase activity of renal basolateral membranes by platelet-derived growth factor through a specific receptor. Biochem Biophys Res Comm 153:1315–1323Google Scholar
  41. 41.
    Kim JK, Dillingham MA, Summer SM, Ishikawa SE, Anderson RJ, Schrier RW (1985) Effects of vasopressin antagonist on vasopressin binding, adenylate cyclase activation, and water flux. J Clin Invest 76:1530–1535Google Scholar
  42. 42.
    Kirchner KA (1988) Insulin increases loop segment chloride reabsorption in the euglycemic rat. Am J Physiol 255:F1206-F1213Google Scholar
  43. 43.
    Kohan DE, Schreiner GF (1988) Interleukin 1 modulation of renal epithelial glucose and amino acid transport. Am J Physiol 254:F879-F886Google Scholar
  44. 44.
    Kremer S, Troyer D, Kreisberg J, Skorecki K (1988) Interaction of atrial natriuretic peptide-stimulated guanylate cyclase and vasopressin-stimulated calcium signaling pathways in the glomerular mesangial cell. Arch Biochem Biophys 260:763–770Google Scholar
  45. 45.
    Kremer SG, Breuer WV, Skorecki KL (1989) Vasoconstrictor hormones depolarize renal glomerular mesangial cells by activating chloride channels. J Cell Physiol 138:97–105Google Scholar
  46. 46.
    Kriz W, Bankir L, edit (1988) A standard nomenclature for structures of the kidney. Kidney Int 33:1–7Google Scholar
  47. 47.
    Leitman DC, Agnost VL, Catalano RM, Schröder H, Waldman SA, Bennett BM, Tuan JT, Murad F (1988) Atrial natriuretic peptide, oxytocin, and vasopressin increase guanosine 3′,5′-monophosphate in LLC-PK1 kidney epithelial cells. Endocrinology 122:1478–1485Google Scholar
  48. 48.
    Light DB, Schwiebert EM, Karlson KH, Stanton BA (1989) Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243:383–384Google Scholar
  49. 49.
    Liu F-Y, Cogan MG (1987) Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J Clin Invest 73:507–515Google Scholar
  50. 50.
    Liu F-Y, Cogan MG (1988) Atrial natriuretic factor does not inhibit basal or angiotensin II-stimulated proximal transport. Am J Physiol 255:F434-F437Google Scholar
  51. 51.
    Maldonado PE, Rose B, Loewenstein WR (1988) Growth factors modulate junctional cell-to-cell communication. J Membrane Biol 106:203–210Google Scholar
  52. 52.
    Martin ER, Brenner BM, Ballermann BJ (1988) Identification of specific, high affinity endothelin (EN) binding sites in rat renal papillary (P) and glomerular (G) membranes. Am Soc Nephrol 168AGoogle Scholar
  53. 53.
    Mellas J, Gavin III JR, Hammerman MR (1986) Multiplication-stimulating activity-induced alkalinization of canine renal proximal tubular cells. J Biol Chem 261:14437–14442Google Scholar
  54. 54.
    Molony DA, Reeves WB, Hebert SC, Andreoli TE (1987) ADH increases apical Na+, K+, 2Cl entry in mouse medullary thick ascending limbs of Henle. Am J Physiol 252:F177-F187Google Scholar
  55. 55.
    Morel F, Doucet A (1986) Hormonal control of kidney functions at the cell level. Physiol Rev 66:377–468Google Scholar
  56. 56.
    Mujais SM, Kauffman S, Katz AI (1986) Angiotensin binding sites in individual segments of the rat nephron. J Clin Invest 77:315–318Google Scholar
  57. 57.
    Mullin JM, McGinn MT (1988) Epidermal growth factor-induced mitogenesis in kidney epithelial cells (LLC-PK1). Cancer Res 48:4886–4891Google Scholar
  58. 58.
    Nadler SP, Hebert SC, Brenner BM (1986) PGE2, forskolin, and cholera toxin interactions in rabbit cortical collecting tubule. Am J Physiol 250:F127-F135Google Scholar
  59. 59.
    Nakamura R, Emmanouel DS, Katz AI (1983) Insulin binding sites in various segments of the rabbit nephron. J Clin Invest 72:388–392Google Scholar
  60. 60.
    Nonoguchi H, Knepper MA, Mangianello VC (1987) Effects of atrial natriuretic factor on cyclic guanosine monophosphate and cyclic adenosine monophosphate accumulation in microdissected nephron segments from rats. J Clin Invest 79:500–507Google Scholar
  61. 61.
    Nonoguchi H, Sands JM, Knepper MA (1988) Atrial natriuretic factor inhibits vasopressin-stimulated osmotic water permeability in rat inner medullary collecting duct. J Clin Invest 82:1383–1390Google Scholar
  62. 62.
    Nonoguchi H, Sands JM, Knepper MA (1989) ANF inhibits NaCl and fluid absorption in cortical collecting duct of the rat kidney. Am J Physiol 265:F179-F186Google Scholar
  63. 63.
    Norman J, Badie-Dezfooly B, Nord EP, Kurtz I, Schlosser J, Chaudhari A, Fine LG (1987) EGF-induced mitogenesis in proximal tubular cells: potentiation by angiotensin II. Am J Physiol F299–F309Google Scholar
  64. 64.
    Orloff J, Handler J (1962) The similarity of effects of vasopressin, adenosine-3′,5′-monophosphate (cyclic AMP) and theophylline in the toad bladder. J Clin Invest 76:1071–1078Google Scholar
  65. 65.
    Paulmichl M, Wöll E, Lang F (1988) Pertussis toxin-dependent and -independent hormonal effects on cultured renal epithelioid cells. FEBS 234:263–266Google Scholar
  66. 66.
    Pillon DJ, Haskell JF, Meezan E (1988) Distinct receptors for insulin-like growth factor I in rat glomeruli and tubules. Am J Physiol 255:E504-E512Google Scholar
  67. 67.
    Portilla D, Morrissey J, Morrison AR (1988) Bradykininactivated membrane-associated phospholipase C in Madin-Darby canine kidney cells. J Clin Invest 81:1896–1902Google Scholar
  68. 68.
    Preston AS, Muller J, Handler JS (1988) Dexamethasone accelerates differentiation of A6 epithelia and increases response to vasopressin. Am J Physiol 255:C661-C666Google Scholar
  69. 69.
    Redha R, Lopez C, Breyer JA, Jacobson HR, Breyer MD (1988) Mapping of 125-I Epidermal Growth Factor (I-EGF) binding sites along the rabbit nephron. Am Soc Nephrol 171AGoogle Scholar
  70. 70.
    Rogers S, Gavin III JR, Hammerman MR (1985) Phorbol esters inhibit gluconeogenesis in canine renal proximal tubular segments. Am J Physiol 249:F256-F262Google Scholar
  71. 71.
    Rogers SA, Hammerman MR (1988) Insulin-like growth factor II stimulates production of inositol triphosphate in proximal tubular basolateral membranes from canine kidney. Proc Natl Acad Sci USA 85:4037–4041Google Scholar
  72. 72.
    Rollins BJ, Stiles CD (1988) Regulation of c-myc and c-fos proto-oncogene expression by animal cell growth factors. In Vitro Cell Dev Biol 24:81–84Google Scholar
  73. 73.
    Roth J, Lesniak M, Hill JM (1987) Hormone receptor interactions: An overview. Kidney Internat 23:S-56–S-60Google Scholar
  74. 74.
    de Rouffignac C, Jamison RL, edit. (1987) The urinary concentrating mechanism. Kidney Int 31:501–672Google Scholar
  75. 75.
    Rugg RL, Simmons NL (1986) Vasoactive intestinal polypeptide stimulation of adenylate cyclase and transepithelial transport in the cultured epithelial system (MDCK). Renal Physiol 9:52AGoogle Scholar
  76. 76.
    Sack E, Taylor Z (1988) High affinity binding sites for epidermal growth factor (EGF) in renal membranes. Biochem Biophys Res Commun 154:312–317Google Scholar
  77. 77.
    Sands JM, Nonoguchi H, Knepper MA (1987) Vasopressin effects on urea and H2O transport in inner medullary collecting ducts. Am J Physiol 253:F823-F832Google Scholar
  78. 78.
    Sariban-Sohraby S, Sorscher EJ, Brenner BM, Benos DJ (1988) Phosphorylation of a single subunit of the epithelial Na+ channel protein following vasopressin treatment of A6 cells. J Biol Chem 263:13875–13879Google Scholar
  79. 79.
    Schlondorff D, Satriano JA (1985) Interaction of vasopressin, cAMP and prostaglandins in the toad urinary bladder. Am J Physiol 248:F454-F458Google Scholar
  80. 80.
    Schlondorff D, Ardaillou R (1986) Prostaglandins and other arachidonic acid metabolites in the kidney. Kidney Int 29:108–119Google Scholar
  81. 81.
    Schnermann J, Briggs JP (1987) Renal effects of atrial natriuretic peptides. Klin Wochenschr (S VIII):92–96Google Scholar
  82. 82.
    Scicli AG, Carretero OA (1986) Renal kallikrein-kinin system. Kidney Int 29:120–130Google Scholar
  83. 83.
    Shayman JA, Morrison AR (1985) Bradykinin-induced changes in phophatidyl inositol turnover in cultured rabbit papillary collecting tubule cells. J Clin Invest 76:978–984Google Scholar
  84. 84.
    Shayman JA, Morrissey JJ, Morrison AR (1987) Islet activating protein inhibits kinin-stimulated inositol phosphate production, calcium mobilization, and prostaglandin E2 synthesis in renal papillary collecting tubular cells independent of cyclic AMP. J Biol Chem 262:17083–17087Google Scholar
  85. 85.
    Simonson MS, McDermott RG, Njoku N, Sedor JR, Dunn MJ (1988) Endothelin stimulates mitogenesis in quiescent rat mesangial cells (abstract) Am Soc Nephrol, p 36AGoogle Scholar
  86. 86.
    Sonnenberg H, Honrath U, Chong CK, Wilson DR (1986) Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am J Physiol 250:F963-F966Google Scholar
  87. 87.
    Stanton B, Ausiello DA, Light D (1988) G-protein regulation of a cation channel in inner medullary collecting duct (IMCD) cells. Am Soc Nephrol 17AGoogle Scholar
  88. 88.
    Stanton RC, Seifter JL (1988) Epidermal growth factor rapidly activates the hexose monophosphate shunt in kidney cells. Am J Physiol 253:C267-C271Google Scholar
  89. 89.
    Star RA, Nonoguchi H, Balaban RJ, Knepper MA (1988) Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81:1879–1888Google Scholar
  90. 90.
    Stolpe van de A, Jamison RL (1987) Micropuncture study of the effect of ANP on the papillary collecting duct in the rat. Am J Physiol 254:F477-F483Google Scholar
  91. 91.
    Takaichi K, Kurokawa K (1988) Inhibitory guanosine triphosphate-binding protein-mediated regulation of vasopressin action in isolated single medullary tubules of mouse kidney. J Clin Invest 82:1437–1444Google Scholar
  92. 92.
    Takaichi K, Kurokawa K (1988) AVP-sensitive cAMP production is dependent on calmodulin in both MTAL and MCT. Am J Physiol 255:F834-F840Google Scholar
  93. 93.
    Valtin H (1987) Physiological effects of vasopressin on the kidney. In: Gash DM, Boer GJ (eds) Vasopressin. Plenum, New York, pp 369–387Google Scholar
  94. 94.
    Vara F, Rozengurt E (1985) Stimulation of Na/H antiport activity by epidermal growth factor and insulin occurs without activation of protein kinase C. Biochem Biophys Res Comm 130:646–653Google Scholar
  95. 95.
    Walsh-Reitz MM, Toback FG, Holley RW (1983) Vasopressin stimulates growth of renal epithelial cells in culture. Am J Physiol 245:C365-C370Google Scholar
  96. 96.
    Weidmann P, Saxenhofer H, Ferrier C (1987) Geschichte und Physiologie des atrialen natriuretischen Peptids beim Menschen. Schweiz med Wschr 117:1921–1930Google Scholar
  97. 97.
    Welsh C, Dubyak G, Douglas JG (1988) Relationship between phospholipase C activation and prostaglandin -E2 and cyclic adenosine monophosphate production in rabbit tubular epithelial cells. J Clin Invest 81:710–719Google Scholar
  98. 98.
    Wittner M, Stefano di A, Wangemann P, Nitschke R, Greger R, Bailly C, Amiel C, Roinel N, Rouffignac de C (1988) Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron. Pflügers Arch 412:516–523Google Scholar
  99. 99.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Got K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415Google Scholar
  100. 100.
    Yen PH, Shapiro LJ, Fisher DA, Barajas L (1988) In situ hybridization of epidermal growth factor mRNA in the mouse kidney. Am Soc Nephrol 171AGoogle Scholar
  101. 101.
    Zeidel ML, Silva P, Brenner BM, Seifter JL (1987) cGMP mediates effects of atrial peptides on medullary collecting duct cells. Am J Physiol 252:F551-F559Google Scholar
  102. 102.
    Zeidel ML, Kikeri D, Silva P, Burrowes M, Brenner BM (1988) Atrial natriuretic peptides inhibit conductive sodium uptake by rabbit inner medullary collecting duct cells. J Clin Invest 82:1067–1074Google Scholar
  103. 103.
    Zeidel ML, Kone B, Brady H, Gullans S, Brenner BM (1988) Endothelin (E) inhibits Na-K-ATPase in inner medullary collecting duct (IMCD) cells. Am Soc Nephrol: p 173AGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Horster
    • 1
  • M. Sone
    • 1
  1. 1.Physiologisches Institut der Universität MünchenGermany

Personalised recommendations