Skip to main content
Log in

Thyminnucleotid-Synthese und Proliferation von Knochenmarkzellen bei megaloblastären Anämien unter der Einwirkung von Vitamin B12

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Am Knochenmark von vier Patienten mit megaloblastären Anämien wurden vor und nach i.m. Injektion von 1000 µg Vitamin B12 in Form von Cyanocobalamin die bei der Thyminnucleotid-Synthese beteiligten Enzyme FH2-Reductase und Thymidinkinase, der Mitoseindex, der DNS-Gehalt in der Einzelzelle und der in vitro-Einbau von3H-Thymidin untersucht:

  1. 1

    Der Anteil in DNS-Synthese befindlicher Zellen ist in der megaloblastären Erythropoese und Granulopoese im Durchschnitt erhöht. Dieses läßt sich innerhalb der Erythropoese auf einen hohen3H-Thymidinindex der polychromatischen Megaloblasten zurückführen. Bei der Untersuchung der Granulopoese fallen unter den „Riesenstabkernigen“ ein besonders hoher3H-Thymidin-Markierungsindex und gehäuft 4 n DNS-Werte auf. Diese Zellen werden als nicht ausreifungsfähige Fehlbildungen auf der Stufe der Pro- und Myelocyten aufgefaßt.

  2. 2

    Nach Vitamin B12-Gabe fallen3H-Thymidinindex und Anteil der Zellen mit einem DNS-Gehalt zwischen 2 n und 4 n mit Normalisierung des morphologischen Markbefundes auf niedrige Werte ab. Diese Veränderungen erfolgen in der Erythropoese schneller als in der Granulopoese.

  3. 3

    Im Cytolysat des megaloblastären Knochenmarkes ist besonders die Thymidinkinase stark erhöht. Ein beginnender Aktivitätsabfall dieses Enzyms kann bereits 12 Std nach Vitamin B12-Gabe nachgewiesen werden. Dieses läßt sich durch Normalisierung der de-novo-Synthese von Thyminmethylgruppen und Hemmung der Thymidinkinase durch vermehrt gebildetes Thymidintriphosphat erklären. Auch die erhöhte FH2-Reductase fällt nach Vitamin B12-Gabe auf normale Werte ab.

  4. 4

    Der Wirkungsmechanismus des Vitamin B12 und die bei seinem Mangel resultierenden Veränderungen im Zellstoffwechsel und in der Proliferation werden diskutiert. Dabei wird für die Megaloblasten eine verlängerte DNS-Synthesedauer angenommen.

Summary

The enzymes FH2-reductase and thymidine kinase which are important for thymine nucleotide-synthesis, the DNA-content of single cells and the in vitro incorporation of3H-thymidine were examined in the bone marrow of 4 patients with megaloblastic anemias before and after i.m. injection of 1000 µg vitamine B12 as cyanocobalamine.

  1. 1

    Prior to injection of vitamine B12 the number of DNA synthesizing cells is increased in the megaloblastic erythropoietic and in the granulopoietic system. Within the erythropoiesis this is due to a high3H-thymidine-index of polychromatic megaloblasts. Examination of the granulopoiesis shows high3H-thymidine indices and many 4n DNA-values of the giant band cells. These cells seem to be defect precursors — unable to mature — in the compartment of promyelocytes and myelocytes.

  2. 2

    After injection of vitamin B12 there is a decrease of3H-thymidine-index and of cells with DNA-content between 2 n and 4 n to normal values simultanously with morphological restauration of the bone marrow. These changes are detected in the erythropoiesis earlier than in the granulopoiesis.

  3. 3

    In the cytolysate of the megaloblastic bone marrow the thymidine kinase is highly increased. A decrease of this enzyme activity can be detected already 12 hours after injection of vitamine B12. This may be explained by normalisation of de novosynthesis of thymine methylgroups, for thymidine-triphosphate which is formed by this pathway has an inhibitory action on thymidine kinase. The activity of FH2-reductase also is increased and falls down to normal values after application of vitamine B12.

  4. 4

    The mechanism of action of vitamine B12 and the abnormalities of cell metabolism and proliferation in B12-deficiency are discussed. It seems probable that in the cells of the megaloblastic bone marrow the DNA-synthesis is prolongated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bianchi, P. A.: Thymidine phosphorylation and desoxyribonucleic acid synthesis in human leucemic cells. Biochim. biophys. Acta (Amst.)55, 547 (1962).

    Google Scholar 

  2. Canellakis, E. S., J. J. Jaffe, R. Montsavinos, andJ. S. Krakow: Pyrimidine metabolism. V. A comparison of normal and regenerating rat liver. J. biol. Chem.234, 2096 (1959).

    Google Scholar 

  3. Potter, R. L., andO. F. Nyagaard: The conversion of thymidine to thymine nucleotides and desoxyribonucleic acid in vivo. J. biol. Chem.238, 2150 (1963).

    Google Scholar 

  4. Weissman, S. M. R. M. S. Smellie, andJ. Paul: Studies on the biosynthesis of desoxyribonucleic acid by extracts of mammalian cells. IV. The phosphorylation of thymidine. Biochim. biophys. Acta45, 101 (1960).

    Google Scholar 

  5. Blakeley, R. L., andB. M. McDougall: The biosynthesis of thymidylic acid. III. Purification of thymidylate synthetase and its spectrophotometric assay. J. biol. Chem.237, 812 (1962).

    Google Scholar 

  6. Friedkin, M.: The transfer of H3 from tritiated tetrahydrofolic acid to thymidylic acid. Fed. Proc.18, 230 (1959).

    Google Scholar 

  7. Friedkin, M.: Assay of thymidylate synthetase activity. In:S. P. Colowick andN. O. Kaplan, Methods in enzymology, vol. VI, p. 124, New York: Academic Press 1963.

    Google Scholar 

  8. Wahba, A. J., andM. Friedkin: Direct spectrophotometric evidence for the oxydation of tetrahydrofolat during the enzymatic synthesis of thymidylate. J. biol. Chem.236, PC 11 (1961).

    Google Scholar 

  9. Donaldson, K. O., andJ. C. Keresztesy: The interconversion of Prefolic A and tetrahydrofolic acid. Fed. Proc.20, 453 (1961).

    Google Scholar 

  10. Herbert, V.: The assay and nature of folic activity in human serum. J. clin. Invest.40, 81 (1961).

    Google Scholar 

  11. Arnstein, H. R. V.: Metabolic functions of folic acid and vitamin B12. Series Haemat.3, 38 (1965).

    Google Scholar 

  12. Guest, J. R., andD. D. Woods: Metabolic interrelationships between cobalamin and folic acid in the synthesis of methionin by Escherichia coli. In:H. Heinrich, Vitamin B12 und Intrinsic Factor, S. 686. Stuttgart: Ferdinand Enke 1962.

    Google Scholar 

  13. Hatch, F. T., A. R. Larrabee, R. E. Cathou, andJ. M. Buchanan: Enzymatic synthesis of the methyl group of methionin. I. Identification of the enzymes and cofactors involved in the system isolated from Escherichia coli. J. biol. Chem.236, 1095 (1961).

    Google Scholar 

  14. Jaenicke, L.: Ein biologisch aktives Methylfolat. Hoppe-Seylers Z. physiol. Chem.326, 1467 (1963).

    Google Scholar 

  15. Jaenicke, L.: Vitamin and coenzyme function: Vitamin B12 and folic acid. Ann. Rev. Biochem.33, 287 (1964).

    Google Scholar 

  16. Larrabee, A. R., andJ. M. Buchanan: A new intermediate of methionin biosynthesis. Fed. Proc.20, 9 (1961).

    Google Scholar 

  17. Larrabee, A. R., S. Rosenthal, R. E. Cathou, andJ. M. Buchanan: Enzymatic synthesis of the methyl group of methionin. VI. Isolation, characterisation and role of 5-methyltetrahydrofolate. J. biol. Chem.238, 1025 (1961).

    Google Scholar 

  18. Takeyama, S., andJ. M. Buchanan: Enzymatic synthesis of the methyl group of methionin. II. Involvement of vitamin B12. J. biol. Chem.236, 1102 (1961).

    Google Scholar 

  19. Cooper, B. A., andL. Lowenstein: Relative folate deficiency of erythrocytes in pernicious anemia and its correlation with cynocobalamin. Blood24, 502 (1964).

    Google Scholar 

  20. Herbert, V., andR. Zalusky: Interrelation of vitamin B12 and folic acid metabolism: Folic acid clearance studies. J. clin. Invest.41, 1263 (1962).

    Google Scholar 

  21. Mollin, D. L., A. H. Waters, andE. Harriss: Clinical aspects of metabolic inter-relationships between folic acid and vitamin B12. In:H. C. Heinrich, Vitamin B12 und Intrinsic Factor, S. 737. Stuttgart: Ferdinand Enke 1962.

    Google Scholar 

  22. Breitman, T. R.: The feed back inhibition of thymidine kinase. Biochim. biophys. Acta (Amst.)67, 153 (1963).

    Google Scholar 

  23. Ives, D. H., P. A. Morse, andV. R. Potter: Feed back inhibition of thymidine kinase by thymidine triphosphate. J. biol. Chem.238, 1467 (1963).

    Google Scholar 

  24. Bresnick, E., andR. J. Karjala: End-product inhibition of thymidine kinase activity in normal and leucemic leucocytes. Cancer Res.24, 841 (1964).

    Google Scholar 

  25. Wilmanns, W.: Folsäurestoffwechsel und Nucleinsäuresynthese in weißen Blutzellen und ihre Bedeutung für die Chemotherapie der akuten Leukämien. Habil.-Schr. Tübingen 1966.

  26. Crathorn, A. R., andK. V. Shooter: Uptake of thymidine and synthesis of desoxyribonucleic acid in mouse ascites cells. Nature (Lond.)187, 614 (1960).

    Google Scholar 

  27. Potter, R. L.: In: The kinetics of cellular proliferation (edF. Stohlman jr.). p. 113. New York: Grune & Stratton 1959.

    Google Scholar 

  28. Stohlman jr., F.: In: The kinetics of cellular proliferation (ed.F. Stohlman jr.), p. 318. New York: Grune & Stratton 1959.

    Google Scholar 

  29. Friedkin, M., andH. Wood: Utilization of thymidine-C-14 by bone marrow cells and isolated thymus nuclei. J. biol. Chem.220, 639 (1956).

    Google Scholar 

  30. Friedkin, M., D. Tilson, andD. Roberts: Studies of desoxyribonucleic acid biosynthesis in embryonic tissues with thymidin-C-14. J. biol. Chem.220, 627 (1956).

    Google Scholar 

  31. Gall, J. G., andW. W. Johnson: Is there “metabolic” DNA in the mouse seminal vesicle? J. biophys. biochem. Cytol.7, 657 (1960).

    Google Scholar 

  32. Swift, H. H., andA. Rasch: Microphotometry with visible light. In: Physical techniques in biological research, vol. II, p. 353. New York: Academic Press 1956.

    Google Scholar 

  33. Pollister, A. W., andL. Ornstein: Cytophotometric analysis in the visible spectrum. In: Analytical cytology, ed. byR. C. Mellors. London: McGraw-Hill Book Co. 1955.

    Google Scholar 

  34. Ris, H., andE. Mirsky: Quantitative cytochemical determination of desoxyribonucleic acid with Feulgen-nuclearreaction. J. gen. Physiol.33, 125 (1949).

    Google Scholar 

  35. Müller, D.: Studium der Proliferationsdynamik von Blutzellen mit Hilfe cytophotometrischer DNS-Bestimmungen in der Einzelzelle. Klin. Wschr.44, 174 (1966).

    Google Scholar 

  36. Bock, H. E., F. W. Aly, W. L. Castrillón-Oberndorfer, M. Eggstein, Ch. Fröhlich, J. Hartje, D. Müller, K. Seynsche, D. Voss, H. D. Waller u.W. Wilmanns: Verlaufsstudien an megaloblastären Anämien unter Vitamin B12-Behandlung. Klin. Wschr.45, 169 (1967).

    Google Scholar 

  37. Wilmanns, W.: Bestimmung, Eigenschaften und Bedeutung der Dihydrofolsäure-Reductase in den weißen Blutzellen bei Leukämien. Klin. Wschr.40, 533 (1962).

    Google Scholar 

  38. Wilmanns, W., u.L. Jaenicke: Die Bedeutung des Folsäurestoffwechsels für die normale und pathologische Reifung von Blutzellen. Klin. Wschr.41, 1077 (1963).

    Google Scholar 

  39. Futterman, S.: Enzymatic reduction of folic acid and dihydrofolic acid to tetrahydrofolic acid. J. biol. Chem.228, 1031 (1957).

    Google Scholar 

  40. Blakeley, R. L.: Cristalline dihydropteroylglutamic acid. Nature (Lond.)40, 1684 (1961).

    Google Scholar 

  41. Bollum, F. J., andV. R. Potter: Nucleic acid metabolism in regenerating rat liver. VI. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res.19, 561 (1959).

    Google Scholar 

  42. Müller, D.: Erfahrungen mit der Feulgenfärbung für quantitative cytochemische DNS-Untersuchungen. Histochemie7, 96 (1966).

    Google Scholar 

  43. Caspersson, T.: Über den chemischen Aufbau der Strukturen des Zellkerns. Skand. Arch. Physiol.73, Suppl. 8 (1936).

  44. Sandritter, W.: Ultraviolettmikrospektrophotometrie. In: Handbuch der Histochemie, Bd. I, S. 220. Stuttgart 1958.

  45. Müller, D.: Desoxyribonukleinsäurebestimmungen in den Leukozyten der normalen und leukämischen Granulopoese. Klin. Wschr.42, 224 (1964).

    Google Scholar 

  46. Zanker, V.: Allgemeine Grundlagen der Photometrie und Spektrophotometrie. Acta histochem. (Jena)9, 101 (1960).

    Google Scholar 

  47. Ornstein, L.: The distributional error in microspectrophotometry. Lab. Invest.1, 250 (1952).

    Google Scholar 

  48. Oehlert, W.: Histoautoradiographie. In:H. M. Rauen, Biochemisches Taschenbuch, Teil 2, S. 512. Berlin-Göttingen-Heidelberg: Springer 1964.

    Google Scholar 

  49. Astaldi, G.: Differentiation and maturation of haemopoietic cells studied in tissue culture. In: Ciba Found. Symp. on Haemopoiesis. London: J. & A. Churchill Ltd. 1960, p. 99.

    Google Scholar 

  50. Schmid, J. R., S. Moeschlin, andV. Haegi: Pernicious anemia: An erythrokinetic and autoradiographic study, using3H-thymidine,3H-uridine and3H-cytidine. Acta haemat. (Basel)32, 65 (1964).

    Google Scholar 

  51. Mauri, C.: Die DNS-Synthese in den Knochenmarkerythroblasten. Autoradiographische Untersuchungen mittels3H-Thymidin. Folia haemat. (Frankfurt) N.F.6, 239 (1962).

    Google Scholar 

  52. Bock, H.E.: Das Hämomyelogramm. Klin. Wschr.18, 1565 (1939).

    Google Scholar 

  53. Graham, R. M., andM. H. Rheault: Characteristic cellular changes in epithelial cells in pernicious anemia. J. Lab. clin. Med.43, 295 (1954).

    Google Scholar 

  54. Boddington, M. M., andA. J. Spriggs: Epithelial cells in megaloblastic anemias. J. clin. Path.12, 228 (1959).

    Google Scholar 

  55. Rohr, K.: Das menschliche Knochenmark, 3. Aufl. Stuttgart: Georg Thieme 1960.

    Google Scholar 

  56. Weicker, H., u.H. Scharfenberger: Das Megaloblasten-Erythroblastenproblem unter Karyo- und cytometrischen Gesichtspunkten. Dtsch. Arch. klin. Med.202, 133 (1955).

    Google Scholar 

  57. Weicker, H.: Hämo-Zytomorphologie des B12-Mangels in vivo. In: Vitamin B12 und Intrinsic-Factor, S. 361. Stuttgart: Ferdinand Enke 1957.

    Google Scholar 

  58. Weicker, H.: Zellteilung und Zellteilungsstörungen. In:Heilmeyer-Hittmair, Handbuch der allgemeinen speziellen Hämatologie, 2. Aufl., Bd. I/1, S. 148. München: Urban & Schwarzenberg 1957.

    Google Scholar 

  59. Davidson, J. N., I. Leslie, andJ. C. White: The nucleic acid content of the cell. Lancet1951 I, 1287.

    Google Scholar 

  60. White, J. C., I. Leslie, andJ. N. Davidson: Nucleic acids of bone marrow cells, with special reference to pernicious anaemia. J. Path. Bact.66, 291 (1953).

    Google Scholar 

  61. Menten, M. L., andM. Willms: Nucleic acid in cells of bone marrow of patients with pernicious anaemia. Arch. Path.54, 343 (1952).

    Google Scholar 

  62. Glaser, H. S., J. F. Müller, T. Jarrold, K. Sakurai, J. J. Will, andR. W. Vilter: Effect of vitamin B12 and folic acid on nucleic acid composition of the bone marrow of patients with megaloblastic anemia. J. Lab. clin. Med.43, 905 (1954).

    Google Scholar 

  63. Thorell, B.: Studies on the formation of cellular substances during blood cell production. Acta med. scand., Suppl.200, 1 (1947).

    Google Scholar 

  64. Killmann, S. A., E. P. Cronkite, T. M. Fliedner, andV. P. Bond: Mitotic indices of human bone marrow cells. I. Number and cytologic distribution of mitosis. Blood19, 743 (1962).

    Google Scholar 

  65. Killmann, S. A., T. M. Fliedner, V. P. Bond, E. P. Cronkite, andG. Brecher: Mitotic indices of human bone marrow cells. II. The use of mitotic indices for estimation of time parameters of proliferation in serially connected multiplicative cellular compartments. Blood21, 141 (1963).

    Google Scholar 

  66. Killmann, S. A., E. P. Cronkite, T. M. Fliedner, andV. P. Bond: Mitotic indices of human bone marrow cells. III. Duration of some phases of erythrocytic and granulocytic proliferation computed from mitotic indices. Blood24, 267 (1964).

    Google Scholar 

  67. Bond, V. P., T. M. Fliedner, E. P. Cronkite, J. R. Rubini, andJ. S. Robertson: Cell turnover in blood and bloodforming tissues studied with tritiated thymidine. In: Kinetics of cellular proliferation (ed.F. R. Stohlman jr.). New York: Grune & Stratton 1959.

    Google Scholar 

  68. Fieschi, A.: Semiologie des Knochenmarks. Ergebn. inn. Med. Kinderheilk.59, 382 (1940).

    Google Scholar 

  69. Rondanelli, E. G., P. Gorini, E. Magliulo, andG. P. Fiori: Differences in proliferative activity between normoblasts and pernicious anemia megaloblasts. Blood24, 542 (1964).

    Google Scholar 

  70. Lambin, P.: Sur les modifications de la moelle osseuse dans l'anémie pernicieuse et leur signification pathogénique. Zit. nachA. Fieschi, Semilogie des Knochenmarks. Ergebn. inn. Med. Kinderheilk.59, 382 (1940).

    Google Scholar 

  71. Rondanelli, E. G., P. Gorini, E. Magliulo, andG. P. Fiori: Phase contrast studies on mitotic cycle of pernicious anemia megaloblasts after vitamin B12 treatment. Blut12, 267 (1966).

    Google Scholar 

  72. Fitzgerald, P. H., R. D. Menzies, P. E. Crossen, andF. W. Gunz: Cytogenetic and cytochemical studies on marrow cells in B12 and folate deficiency. XIth. Congr. int. Soc. Haemat., Sydney 1966.

  73. Wakisaka, G., H. Uchino, S. Shirakawa, Y. Yoshida, andA. Todo: Studies on the DNA synthesis of megaloblasts. XIth. Congr. int. Soc. Haemat., Sydney 1966.

  74. Finch, C. A., D. H. Coleman, A. Motulsky, D. M. Donohue, andF. H. Reiff: Erythrokinetics in pernicious anemia. Blood11, 807 (1956).

    Google Scholar 

  75. Lajtha, L. G., andR. Oliver: Studies on the kinetics of erythropoiesis: a model of the erythron. In: Ciba Found. Symp. on Haemopoiesis. London: J. & A. Churchill Ltd. 1960, p. 289.

    Google Scholar 

  76. Alpen, E. L., andD. Cranmore: Observations on the regulation of erythropoiesis and on cellular dynamics by Fe59 autoradiography. In: The cinetics of cellular proliferation (ed.F. Stohlman jr.), p. 290, New York: Grune & Stratton 1959.

    Google Scholar 

  77. Gross, R., E. Grundmann, H. Brehmke, I. Kahlstorf u.U. Bock: Art und Intensität der Zellvermehrung bei akuten Leukosen. (Nach morphologischen und cytophotometrischen Untersuchungen.) Klin. Wschr.40, 392 (1962).

    Google Scholar 

  78. Boll, I.: Granulocytopoese unter physiologischen und pathologischen Bedingungen. In: Experimentelle Medizin, Pathologie und Klinik, Bd. 17. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  79. Cohen, S. S., andH. D. Barnes: Studies on unbalanced growth in Escherichia coli. Proc. nat. Acad. Sci. (Wash.)50, 885 (1954).

    Google Scholar 

  80. Beck, W. S.: The metabolic function of vitamin B12. New Engl. J. Med.266, 765 (1962).

    Google Scholar 

  81. Thomas, E. D., andH. L. Lochte: Studies on the biochemical defect of pernicious anemia. I. In vitro observations on oxygen consumption, heme synthesis and desoxyribonucleic acid synthesis by pernicious anemia bone marrow. J. clin. Invest.37, 166 (1958).

    Google Scholar 

  82. Williams, A. M., J. J. Chosy, andR. F. Schilling: Effects of vitamin B12 in vitro on incorporation of nucleic acid precursors by pernicious anemia bone marrow. J. clin. Invest.42, 670 (1963).

    Google Scholar 

  83. Killmann, S. A.: Effect of desoxyuridine on incorporation of tritiated thymidine: Difference between normoblasts and megaloblasts. Acta med. scand.175, 483 (1964).

    Google Scholar 

  84. Spies, T. D., W. B. Frommeyer, C. F. Vilter, andA. English: Anti-anemic propertis of thymine. Blood1, 185 (1946).

    Google Scholar 

  85. Bock, H. E.: Zur Thyminwirkung bei Anaemia perniciosa. Schweiz. med. Wschr.78, 1104 (1948).

    Google Scholar 

  86. Killmann, S. A.: Erythropoetic response to thymidine in pernicious anemia. Acta med. scand.175, 489 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung der Deutschen Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, H.E., Hartje, J., Müller, D. et al. Thyminnucleotid-Synthese und Proliferation von Knochenmarkzellen bei megaloblastären Anämien unter der Einwirkung von Vitamin B12 . Klin Wochenschr 45, 176–188 (1967). https://doi.org/10.1007/BF01716905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01716905

Navigation