Skip to main content
Log in

In vitro selection methodologies to probe RNA function and structure

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

In vitro selection, or SELEX, has been used both to characterize the interaction of natural nucleic acids with proteins and to generate novel nucleic acid-binding species, or aptamers. Although numerous reports have demonstrated the power of the technique, they have not expanded on the methodologies that can be used for selection. This review focuses on the considerations and problems involved in selecting protein-binding aptamers from a random-sequence RNA pool. As an illustration, we describe two approaches to selecting aptamers to a particular target, the HTLV-I Rex protein. In the first, complete randomization is used to find an artificial, high-affinity RNA binding site. In the second, the contributions of individual nucleotides and/or base pairs to the natural Rex-binding element are determined by mutating the wild-type sequence and selecting active binding variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conrad, R.C., Giver, L., Tian, Y. and Ellington, A.D.,In vitro selection of nucleic acid aptamers that bind proteins, Methods Enzymol., (1995) in press.

  2. Ellington, A. and Conrad, R.,Aptamers as potential nucleic acid pharmaceuticals, In Biotechnology Annual Review, Vol. 1, Elsevier, Amsterdam, 1995, in press.

    Google Scholar 

  3. Gold, L.,Oligonudeotides as research, diagnostic, and therapeutic agents, J. Biol. Chem., 270 (1995) 13581–13584.

    Google Scholar 

  4. Gold, L., Polisky, B., Uhlenbeck, O. and Yarus, M.,Diversity of oligonudeotide functions, Annu. Rev. Biochem., 64 (1995) 763–797.

    Google Scholar 

  5. Oliphant, A.R., Brandi, C.J. and Strahl, K.,Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: Analysis of GCN4 protein, Mol. Cell. Biol., 9 (1989) 2944–2949.

    Google Scholar 

  6. Tuerk, C. and Gold, L.,Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249 (1990) 505–510.

    Google Scholar 

  7. Schneider, D., Tuerk, C. and Gold, L.,Selection of high affinity RNA ligands to the bacteriophage R17 coat protein, J. Mol. Biol., 228 (1992) 862–869.

    Google Scholar 

  8. Schneider, D., Gold, L. and Platt, T.,Selective enrichment of RNA species for tight binding to Escherichia coli rho factor, FASEB J., 7 (1993) 201–207.

    Google Scholar 

  9. Tsai, D.E., Harper, D.S. and Keene, J.D.,U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts, Nucleic Acids Res., 19 (1991) 4931–4936.

    Google Scholar 

  10. Levine, T.D., Gao, F., King, P.H., Andrews, L.G. and Keene, J.D.,Hel-N1: An autoimmune RNA-binding protein with specificity for 3′ uridylate-rich untranslated regions of growth factor mRNAs, Mol. Cell. Biol., 13 (1993) 3494–3504.

    Google Scholar 

  11. Tsai, D.E., Kenan, D.J. and Keene, J.D.,In vitro selection of an RNA epitope immunologically cross-reactive with a peptide, Proc. Natl. Acad. Sci. USA, 89 (1992) 8864–8868.

    Google Scholar 

  12. Tsai, D.E. and Keene, J.D.,In vitro selection of RNA epitopes using autoimmune patient serum, J. Immunol., 150 (1993) 1137–1145.

    Google Scholar 

  13. Jellinek, D., Lynott, C.K. and Janjic, D.B.R.N,High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding, Proc. Natl. Acad. Sci. USA, 90 (1993) 11227–11231.

    Google Scholar 

  14. Conrad, R., Keranen, L.M., Ellington, A.D. and Newton, A.C.,Isozyme-specific inhibition of protein kinase C by RNA aptamers, J. Biol. Chem., 269 (1994) 32051–32054.

    Google Scholar 

  15. Tian, Y., Adya, N., Wagner, S., Giam, C.-z., Green, M.R. and Ellington, A.D.,Dissecting protein:protein interactions between transcription factors with an RNA aptamer, RNA, 1 (1995) 317–326.

    Google Scholar 

  16. Bock, L.C., Griffin, L.C., Latham, J.A., Vermass, E.H. and Toole, J.J.,Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature, 355 (1992) 564–566.

    Google Scholar 

  17. Padmanabhan, K., Padmanabhan, K.P., Ferrera, J.D., Sadler, J.E. and Tulinsky, A.,The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer, J. Biol. Chem., 268 (1993) 17651–17654.

    Google Scholar 

  18. Kubik, M.F., Stephens, A.W., Schneider, D., Marlar, R.A. and Tasset, D.,High-affinity RNA ligands to human α-thrombin, Nucleic Acids Res., 22 (1994) 2619–2626.

    Google Scholar 

  19. Bartel, D.P., Zapp, M.L., Green, M.R. and Szostak, J.W.,HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA, Cell, 67 (1991) 529–536.

    Google Scholar 

  20. Giver, L., Bartel, D., Zapp, M., Pawul, A., Green, M. and Ellington, A.D.,Selective optimization of the Rev-binding element of HIV-1, Nucleic Acids Res., 21 (1993) 5509–5516.

    Google Scholar 

  21. Tuerk, C. and MacDougal-Waugh, S.,In vitro evolution of functional nucleic acids: High-affinity ligands of HIV-1 proteins, Gene, 137 (1993) 33–39.

    Google Scholar 

  22. Tuerk, C., MacDougal, S. and Gold, L.,RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase, Proc. Natl. Acad. Sci. USA, 89 (1992) 6988–6992.

    Google Scholar 

  23. Chen, H. and Gold, L.,Selection of high-affinity RNA ligands to reverse transcriptase: Inhibition of cDNA synthesis and RNase H activity, Biochemistry, 33 (1994) 8746–8756.

    Google Scholar 

  24. Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B.,High-resolution molecular discrimination by RNA, Science, 263 (1994) 1425–1429.

    Google Scholar 

  25. Paborsky, L.R., McCurdy, S.N., Griffin, L.C., Toole, J.J. and Leung, L.L.K.,The single-stranded DNA aptamer-binding site of human thrombin, J. Biol. Chem., 268 (1993) 20808–20811.

    Google Scholar 

  26. Peterson, E.T., Blank, J., Spronz, M. and Uhlenbeck, O.C.,Selection for active E. coli tRNA phe variants from a randomized library using two proteins, EMBO J., 12 (1993) 2959–2967.

    Google Scholar 

  27. Peterson, E.T., Pan, T., Coleman, J. and Uhlenbeck, O.C.,In vitro selection of small RNAs that bind to Escherichia coli phenylalanyltRNA synthetase, J. Mol. Biol., 242 (1994) 186–192.

    Google Scholar 

  28. Leclerc, F., Cedegren, R. and Ellington, A.,A three-dimensional model of the Rev-binding element of HIV-1 derived from analyses of aptamers, Nature Struct. Biol., 1 (1994) 293–300.

    Google Scholar 

  29. Kramer, F.R., Mills, D.R., Cole, P.E., Nishihara, T. and Spiegelman, S.,Evolution of in vitro sequence and phenotype of a mutant RNA resistant to ethidium bromide, J. Mol. Biol., 4 (1974) 427–429.

    Google Scholar 

  30. Orgel, L.E.,Selection in vitro, Proc. R. Soc. London, 205 (1979) 435–442.

    Google Scholar 

  31. Abmayr, S.B. and Workman, J.L.,Mobility shift DNA-binding assay using gel electrophoresis, In Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (Eds.) Current Protocols in Molecular Biology, Vol. 2, Wiley, New York, NY, 1988, pp. 12.2.1–12.2.6.

    Google Scholar 

  32. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H.,Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction, Cold Spring Harbor Symp. Quant. Biol., 51 (1986) 263–273.

    Google Scholar 

  33. Guatelli, J.C., Whitfield, K.M., Kwoh, D.Y., Barringer, K.J., Richman, D.D. and Gingeras, T.R.,Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modelled after retroviral replication, Proc. Natl. Acad. Sci. USA, 87 (1990) 1874–1878.

    Google Scholar 

  34. Kwoh, D.Y., Davis, G.R., Whitfield, K.M., Chapelle, H.L., DeMichele, L.J. and Gingeras, T.R.,Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format, Proc. Natl. Acad. Sci. USA, 86 (1989) 1173–1177.

    Google Scholar 

  35. Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K. and Green, M.R.,Efficient in vitro synthesis of active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter, Nucleic Acids Res., 12 (1984) 7035–7056.

    Google Scholar 

  36. Milligan, J.F., Groebe, D.R., Witherell, G.W. and Uhlenbeck, O.C.,Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates, Nucleic Acids Res., 15 (1987) 8783–8798.

    Google Scholar 

  37. Lato, S.M., Boles, A.R. and Ellington, A.D.,In vitro selection of RNA lectins: Using combinatorial chemistry to interpret ribozyme evolution, Chem. Biol., 2 (1995) 291–303.

    Google Scholar 

  38. Lorsch, J.R. and Szostak, J.W.,In vitro selection of RNA aptamers specific for cyanocobalamin, Biochemistry, 33 (1994) 973–982.

    Google Scholar 

  39. Irvine, D., Tuerk, C. and Gold, L.,SELEXION systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis, J. Mol. Biol., 222 (1991) 739–761.

    Google Scholar 

  40. Ellington, A. and Green, R.,Synthesis of oligonucleotides, In Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (Eds.) Current Protocols in Molecular Biology, Vol. 1, Wiley, New York, NY, 1988, pp. 2.11.1–2.11.18.

    Google Scholar 

  41. Dicker, A.P., Volkenandt, M. and Bertino, J.R.,Manual and automated direct sequencing of product generated by the polymerase chain reaction, In White, B.A. (Ed.) Methods in Molecular Biology, Vol. 15: PCR Protocols: Current Methods and Applications, Humana Press, Totowa, NJ, 1993, pp. 143–152.

    Google Scholar 

  42. Silveira, M.H. and Orgel, L.E.,PCR with detachable primers, Nucleic Acids Res., 23 (1995) 1083–1084.

    Google Scholar 

  43. Latham, J.A., Johnson, R. and Toole, J.J.,The application of a modified nucleotide in aptamer selection: Novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine, Nucleic Acids Res., 22 (1994) 2817–2822.

    Google Scholar 

  44. Aurup, H., Williams, D.M. and Eckstein, F.,2′-fluoro- and 2′-amino-2′-deoxynucleoside 5′-triphosphates as substrates for T7 RNA polymerase, Biochemistry, 31 (1992) 9636–9641.

    Google Scholar 

  45. Lin, Y., Qiu, Q., Gill, S.C. and Jayasena, S.D.,Modified RNA sequence pools for in vitro selection, Nucleic Acids Res., 22 (1994) 5229–5234.

    Google Scholar 

  46. Ruffner, D.E. and Uhlenbeck, O.C.,Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction, Nucleic Acids Res., 18 (1990) 6025–6029.

    Google Scholar 

  47. Crameri, A. and Stemmer, W.P.C., 1020-fold aptamer library amplification without gel purification, Nucleic Acids Res., 21 (1993) 4410.

    Google Scholar 

  48. Ahmed, Y.F., Hanley, S.M., Malim, M.H., Cullen, B.R. and Greene, W.C.,Structure-function analyses of the HTLV-I Rex and HIV-1 Rev RNA response elements: Insights into the mechanism of Rex and Rev action, Genes Dev., 4 (1990) 1014–1022.

    Google Scholar 

  49. Bogerd, H.P., Huckaby, G.L., Ahmed, Y.F., Hanly, S.M. and Greene, W.C.,The type I human T-cell leukemia virus (HTLV-I) Rex trans-activator binds directly to the HTLV-I Rex and the type 1 human immunodeficiency virus Rev RNA response elements, Proc. Natl. Acad. Sci. USA, 88 (1991) 5704–5708.

    Google Scholar 

  50. Baskerville, S., Zapp, M. and Ellington, A.D.,High-resolution mapping of the HTLV-I Rex binding element by in vitro selection, J. Virology, (1995) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, R.C., Baskerville, S. & Ellington, A.D. In vitro selection methodologies to probe RNA function and structure. Mol Divers 1, 69–78 (1995). https://doi.org/10.1007/BF01715810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01715810

Keywords

Navigation