Molecular Diversity

, Volume 2, Issue 4, pp 223–236 | Cite as

Discovery of enzyme inhibitors through combinatorial chemistry

  • Roland E. Dolle


This review serves to highlight the recent examples of combinatoric methodology as applied to the discovery and optimization of enzyme inhibitors. Early research efforts focused on the identification of polypeptides from libraries as inhibitors of proteases. As solution- and solid-phase chemistries gain in sophistication, libraries containing less peptidic structural motifs have been created. A recurring design stratagem relies on the synthesis of libraries incorporating pharmacophores with known affinity for the target enzyme. Screening of these structure-based libraries has led to the discovery of small-molecule inhibitors of both proteolytic and non-proteolytic enzymes alike. Two tables are provided listing the enzyme targeted libraries through 1996. A name, generic structure and size is given for each library citation, accompanied by the enzyme screen and the structure and potency of the most active library member.


Combinatorial chemistry Enzyme Inhibitor Protease Kinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastos, M., Maeji, N.J. and Abeles, R.H.,Inhibitors of human heart chymase based on a peptide library, Proc. Natl. Acad. Sci. USA, 92 (1995) 6738–6742.Google Scholar
  2. 2.
    Campbell, D.A., Bermak, J.C., Burkoth, T.S. and Patel, D.V.,A transition state analogue inhibitor combinatorial library, J. Am. Chem. Soc., 117 (1995) 5381–5382.Google Scholar
  3. 3.
    Carell, T., Wintner, E.A., Sutherland, A.J., Rebek Jr., J., Dunayevskiy, Y.M. and Vouros, P.,New promise in combinatorial chemistry: Synthesis, characterization, and screening of small-molecule libraries in solution, Chem. Biol., 2 (1995) 171–183.Google Scholar
  4. 4 a.
    Chen, C.L., Strop, P., Lebl, M. and Lam, K.S.,One bead-one compound combinatorial peptide library: Different types of screening, Combinatorial Chem., 267 (1996) 211–219.Google Scholar
  5. 4 b.
    Seligmann, B., Abdul-Latif, F., Al-Obeidi, F., Flegelova, Z., Issakova, O., Kocis, P., Krchňák, V., Lam, K.S., Lebl, M., Ostrem, J., Safar, P., Sepetov, N., Stierandova, A., Strop, P. and Wildgoose, P.,The construction and use of peptide and nonpeptidic combinatorial libraries to discover enzyme inhibitors, Eur. J. Med. Chem., 30 (Suppl.) (1995) 319s-335s.Google Scholar
  6. 5.
    Coombs, G.S., Hazzard, J. and Corey, D.R.,Kinetic characterization of a peptide inhibitor of trypsin isolated from a synthetic peptide combinatorial library, Bioorg. Med. Chem. Lett., 5 (1995) 611–614.Google Scholar
  7. 6.
    Dolle, R.E.,Design, synthesis and evaluation of aspartyl protease libraries using a molecular encoding strategy, Abstract, First Japanese Conference on Combinatorial Chemistry and High Throughput Screening, Cambridge Healthtech Institute, Osaka, Japan, November 7–9, 1996.Google Scholar
  8. 7.
    Eichler, J. and Houghten, R.A.,Identification of substrate-analog trypsin inhibitors through the screening of synthetic peptide combinatorial libraries, Biochemistry, 32 (1993) 11035–11041.Google Scholar
  9. 8.
    Eichler, J., Lucka, A.W. and Houghten, R.A.,Cyclic peptide template combinatorial libraries: Synthesis and identification of chymotrypsin inhibitors, Pept. Res., 7 (1994) 300–307.Google Scholar
  10. 9.
    Foley, M.A., Hassman, A.S., Drewry, D.H., Greer, D.G., Wagner, C.D., Feldman, P.L., Berman, J., Bickett, D.M., McGeeham, G.M., Lambert, M.H. and Green, M.,Rapid synthesis of novel dipeptide inhibitors of human collagenase, Bioorg. Med. Chem. Lett., 6 (1996) 1905–1910.Google Scholar
  11. 10.
    For a preliminary account see: Gong, B., Chen, X., Cheng, M., Li, R., Kenyon, G.L. and Cohen, F.E.,Structure-based design and solid phase synthesis of cysteine protease inhibitors for parasitic diseases, 212th American Chemical Society Meeting, Orlando, FL, U.S.A., 1996, Abstract MEDI-039.Google Scholar
  12. 11.
    Jiracek, J., Yiotakis, A., Vincent, B., Checler, F. and Dive, V.,Development of the first potent and selective inhibitor of the zinc endopeptidase neurolysin using a systematic approach based on combinatorial chemistry of phosphinic peptides, J. Biol. Chem., 271 (1996) 19606–19611.Google Scholar
  13. 12.
    Jiracek, J., Yiotakis, A., Vincent, B., Lecoq, A., Nicolaou, A., Checler, F. and Dive, V.,Development of highly potent and selective phosphinic peptide inhibitors of zinc endopeptidase 24-15 using combinatorial chemistry, J. Biol. Chem., 270 (1995) 21701–21706.Google Scholar
  14. 13.
    Kick, E.K. and Ellman, J.A.,Expedient method for the solid-phase synthesis of aspartic acid protease inhibitors directed toward the generation of libraries, J. Med. Chem., 38 (1995) 1427–1430.Google Scholar
  15. 14.
    Lloyd, J., Schmidt, J.B., Hunt, J.T., Barrish, J.C., Little, D.K. and Tymiak, A.A.,Solid phase synthesis of phosphinic acid endothelin converting enzyme inhibitors, Bioorg. Med. Chem. Lett., 6 (1996) 1323–1326.Google Scholar
  16. 15.
    Murphy, M.M., Schullek, J.R., Gordon, E.M. and Gallop, M.A.,Combinatorial organic synthesis of highly functionalized pyrrolidines: Identification of a potent angiotensin converting enzyme inhibitor from a mercaptoacyl proline library, J. Am. Chem. Soc., 117 (1995) 7029–7030.Google Scholar
  17. 16.
    Owens, R.A., Gesellchen, P.D., Houchins, B.J. and DiMarchi, R.D.,The rapid identification of HIV protease inhibitors through the synthesis and screening of defined peptide mixtures, Biochem. Biophys. Res. Commun., 181 (1991) 402–408.Google Scholar
  18. 17.
    Wang, G.T., Li, S., Wideburg, N., Krafft, G.A. and Kempf, D.J.,Synthetic chemical diversity: Solid phase synthesis of libraries of C(2) symmetric inhibitors of HIV protease containing diamino diol and diamino alcohol cores, J. Med. Chem., 38 (1995) 2995–3002.Google Scholar
  19. 18.
    Rockwell, A., Melden, M., Copeland, R.A., Hardman, K., Decicco, C.P. and DeGrado, W.F.,Complementarity of combinatorial chemistry and structure-based ligand design: Application to the discovery of novel inhibitors of matrix metalloproteinases, J. Am. Chem. Soc., 118 (1996) 10337–10338.Google Scholar
  20. 19 a.
    Chabala, J.C., Baldwin, J.J., Burbaum, J.J., Chelsky, D., Dillard, L.W., Henderson, I., Li, G., Ohlmeyer, M.H.J., Randle, T.L., Reader, J.C., Rokosz, L. and Sigal, N.H.,Binary encoded small-molecular libraries in drug discovery and optimization, Perspect. Drug Discov. Design, 2 (1994) 305–318.Google Scholar
  21. 9 b.
    Baldwin, J.J., Burbaum, J.J., Henderson, I. and Ohlmeyer, M.H.,Synthesis of a small molecule combinatorial library encoded with molecular tags, J. Am. Chem. Soc., 117 (1995) 5588–5589.Google Scholar
  22. 9 c.
    Burbaum, J.J., Ohlmeyer, M.H.J., Reader, J.C., Henderson, I., Dillard, L.W., Li, G., Randle, T.L., Sigal, N.H., Chelsky, D. and Baldwin, J.J.,A paradigm for drug discovery employing encoded combinatorial libraries, Proc. Natl. Acad. Sci. USA, 92 (1995) 6027–6031.Google Scholar
  23. 20.
    Gao, J., Cheng, R.C., Sigal, G.B., Bruce, J.E., Schwartz, B.L., Hofstadler, S.A., Anderson, G.A., Smith, R.D. and Whitesides, G.M.,Screening derivatized peptide libraries for tight binding inhibitors to carbonic anhydrase II by electrospray ionization-mass spectrometry, J. Med. Chem., 39 (1996) 1949–1955.Google Scholar
  24. 21.
    Lingardo, L.W., Davis, P.W., Ecker, D.J., Herbert, N., Acevedo, O., Sprankle, K., Brennan, T., Schwarcz, L., Freier, S.M. and Wyatt, J.R.,Deconvolution of combinatorial libraries for drug discovery: Experimental comparison of pooling strategies, J. Med. Chem., 39 (1996) 2720–2726.Google Scholar
  25. 22.
    Look, G.C., Schullek, J.R., Holmes, C.P., Chinn, J.P., Gordon, E.M. and Gallop, M.A.,The identification of cyclooxygenase-1 inhibitors from 4-thiazolidinone combinatorial libraries, Bioorg. Med. Chem. Lett., 6 (1996) 707–712.Google Scholar
  26. 23.
    Lutzke, R.A.P., Eppens, N.A., Weber, P.A., Houghten, R.A. and Plasterk, R.H.A.,Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library, Proc. Natl. Acad. Sci. USA, 92 (1995) 11456–11460.Google Scholar
  27. 24.
    Moran, E.J., Sarshar, S., Cargill, J.F., Shahbaz, M.M., Lio, A., Mjalli, A.M.M. and Armstrong, R.W.,Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B, J. Am. Chem. Soc., 117 (1995) 10787–10788.Google Scholar
  28. 25.
    Norman, T.C., Gray, N.S., Koh, J.T. and Schultz, P.G.,A structure-based library approach to kinase inhibitors, J. Am. Chem. Soc., 118 (1996) 7430–7431.Google Scholar
  29. 26.
    Gordon, E.M., Gallop, M.A. and Patel, D.V.,Strategy and tactics in combinatorial organic synthesis, applications to drug discovery, Acc. Chem. Res., 29 (1996) 144–154.Google Scholar
  30. 27.
    Green, J.,Solid phase synthesis of lavendustin A and analogues, J. Org. Chem., 60 (1995) 4287–4290.Google Scholar
  31. 28.
    Meyers, H.V., Dilley, G.J., Durgin, T.L., Powers, T.S., Winssinger, N.A., Zhu, H. and Pavia, M.R.,Multiple simultaneous synthesis of phenolic libraries, Mol. Div., 1 (1995) 13–20.Google Scholar
  32. 29.
    Walsh, D.A. and Uwaydah, I.M., U.S. Patent 5 061 720, 1991.Google Scholar
  33. 30.
    MacDonald, A.A., DeWitt, S.H., Hogan, E.M. and Ramage, R.,A solid phase approach to quinolones using the DIVERSOMER ® technology, Tetrahedron Lett., 37 (1996) 4815–4818.Google Scholar
  34. 31.
    Ellman, J.A.,Design, synthesis, and evaluation of small-molecule libraries, Acc. Chem. Res., 29 (1996) 132–143.Google Scholar
  35. 32.
    For a general review on combinatorial methods and solid-phase chemistries see: Ellman, J.A.,Synthesis and application of small molecule libraries, Chem. Rev., 96 (1996) 555–600.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1997

Authors and Affiliations

  • Roland E. Dolle
    • 1
  1. 1.Department of ChemistryPharmacopeia Inc.PrincetonUSA

Personalised recommendations