Skip to main content
Log in

Dipolar cycloadditions in solid-phase organic synthesis (SPOS)

  • Research Papers
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

We present a concise review of polymer-supported 1,3-dipolar cycloaddition reactions. Nitrile oxide and azomethine ylides constitute the two types of 1,3-dipoles which have been used in conjunction with solid-phase organic synthesis. These cycloaddition reactions on solid phase are generally of equal or greater efficiency than the analogous solution-phase reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crowley, J.I. and Rapoport, H.,Solid-phase organic synthesis: Novelty or fundamental concept, Acc. Chem. Res., 9 (1976) 135–144.

    Google Scholar 

  2. Leznoff, C.C.,The use of insoluble polymer supports in general organic synthesis, Acc. Chem. Res., 11 (1978) 327–333.

    Google Scholar 

  3. Frechet, J.M.J.,Synthesis and applications of organic polymers as supports and protecting groups, Tetrahedron, 37 (1981) 663–683.

    Google Scholar 

  4. Hodge, P.,Organic reactions using polymer-supported catalysts, treagents or substrates, In Sherrington, D.C. and Hodge, P. (Eds.) Synthesis and Separations Using Functional Polymers, Wiley, New York, NY, U.S.A., 1988, pp. 43–122.

    Google Scholar 

  5. Thompson, L.A. and Ellman, J.A.,Synthesis and application of small molecule libraries, Chem. Rev., 96 (1996) 555–600.

    Google Scholar 

  6. Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gallop, M.A.,Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions, J. Med. Chem., 37 (1994) 1385–1401.

    Google Scholar 

  7. Huisgen, R.,1,3-Dipolar cycloadditions — Introduction, survey, mechanism, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 1, Wiley, New York, NY, U.S.A., 1984, pp. 1–176.

    Google Scholar 

  8. Hansen, H.-J. and Heimgartner, H.,Nitrile ylides, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 1, Wiley, New York, NY, U.S.A., 1984, pp. 177–290.

    Google Scholar 

  9. Caramella, P. and Grunanger, P.,Nitrile oxides and imines, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 1, Wiley, New York, NY, U.S.A., 1984, pp. 291–392.

    Google Scholar 

  10. Regitz, M. and Heydt, H.,Diazoalkanes, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 1, Wiley, New York, NY, U.S.A., 1984, pp. 393–558.

    Google Scholar 

  11. Lwowski, W.,Azides and nitrous oxide, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 1, Wiley, New York, NY, U.S.A., 1984, pp. 559–652.

    Google Scholar 

  12. Lown, J.W.,Azomethine ylides, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 1, Wiley, New York, NY, U.S.A., 1984, pp. 653–733.

    Google Scholar 

  13. Grashy, R.,Azomethine imines, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 1, Wiley, New York, NY, U.S.A., 1984, pp. 733–817.

    Google Scholar 

  14. Tufariello, J.J.,Nitrones, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 2, Wiley, New York, NY, U.S.A., 1984, pp. 83–168.

    Google Scholar 

  15. Kuczkowski, R.L.,Ozone and carbonyl oxides, In Padwa, A. (Ed.) General Heterocyclic Chemistry Series, Vol. 2, Wiley, New York, NY, U.S.A., 1984, pp. 197–276.

    Google Scholar 

  16. Torsell, K., Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCH Publishers, New York, NY, U.S.A., 1988.

    Google Scholar 

  17. Christensen, I.T., Ebert, B., Madsen, U., Nielsen, B., Brehm, L. and Krogsgaard-Larsen, P.,Excitatory amino acid receptor ligands-Synthesis and biological activity of 3-isoxazolol amino acids structurally related to homoibotenic acid, J. Med. Chem., 35 (1992) 3512–3519.

    Google Scholar 

  18. Mallamo, J.P., Diana, G.D., Pevear, D.C., Dutko, F.J, Chapman, M.S., Kim, K.H., Minor, I., Oliveira, M. and Rossman, M.G.,Conformationally restricted analogues of disoxaril — A comparison of the activity against human rhinovirus type-14 and type-1A, J. Med. Chem., 35 (1992) 4690–4695.

    Google Scholar 

  19. Koga, H., Sato, H., Dan, T. and Aoki, B.,Studies on uricosuric diuretics. 4. 3-Dimensional structure activity relationships and receptor mapping of (aryloxy)acetic acid dieretics, J. Med. Chem., 34 (1991) 2702–2708.

    Google Scholar 

  20. Chiarino, D., Grancini, G., Frigeni, V., Biasini, I. and Carenzi, A.,N-(4-Isoxazolylthiazol-2-yl)oxamic acid derivatives as potent orally active antianaphylactic agents, J. Med. Chem., 34 (1991) 600–605.

    Google Scholar 

  21. Kozikowski, A.P.,The isoxazoline route to the molecules of nature, Acc. Chem. Res., 17 (1984) 410–416.

    Google Scholar 

  22. Jager, V. and Grund, H.,Eliminative ring opening of 2-isoxazolines: A new route to α,β-unsaturated ketones, Angew. Chem. Int. Ed. Engl., 15 (1976) 50–51.

    Google Scholar 

  23. Curran, D.P. and Chao, J.-C.,Control of relative stereochemistry in the cycloadditive route to β-hydroxy carbonyls. Stereoselective exo aldol reactions of Δ 2 -isoxazolines, Tetrahedron, 46 (1990) 7325–7339.

    Google Scholar 

  24. Kawai, M., Nishikomor, R., Jung, E.-Y., Tai, G., Yamanaka, C., Mayumi, M. and Heike, T.,Pyrrolidine dithiocarbamate inhibits intercellular adhesion molecule-1 biosynthesis induced by cytokines in human fibroblasts, J. Immunol., 154 (1995) 2333–2341.

    Google Scholar 

  25. Petrillo, E.W. and Ondetti, M.A.,Angiotensin-Converting Enzyme Inhibitors: Medicinal chemistry and biological actions, Med. Res. Rev., 2 (1982) 1–41.

    Google Scholar 

  26. Kanemasa, S., Sakamoto, K. and Tsuge, O.,Nonstabilized azomethine ylides generated by decarboxylative condensation of α-amino acids — Structural variation, reactivity and stereoselectivity, Bull. Chem. Soc. Jpn., 62 (1989) 1960–1968.

    Google Scholar 

  27. Grigg, R.,Prototropic routes to 1,3- and 1,5-dipoles and 1,2-ylides: Applications to the synthesis of heterocyclic compounds, Chem. Soc. Rev., 16 (1987) 89–121.

    Google Scholar 

  28. Fleming, I.,Thermal pericyclic reactions, In Fleming, I. (Ed.) Frontier Molecular Orbitals and Organic Chemical Reactions, Wiley, London, U.K., 1976, pp. 148–161.

    Google Scholar 

  29. Yedidia, V. and Leznoff, C.C.,Regioselectivity in cycloaddition reactions on solid phases, Can. J. Chem., 58 (1980) 1144–1150.

    Google Scholar 

  30. Christl, M., Huisgen, R. and Sustmann, R.,Zur anlagerung des benzonitriloxids an α,β-ungesattigte carbonsaureester, Chem. Ber., 106 (1973) 3275–3290.

    Google Scholar 

  31. Beebe, X., Schore, N.E. and Kurth, M.J.,Polymer-supported synthesis of 2,5-disubstituted tetrahydrofurans, J. Am. Chem. Soc., 114 (1992) 10061–10062.

    Google Scholar 

  32. Beebe, X., Schore, N.E. and Kurth, M.J.,Polymer-supported synthesis of cyclic ethers: Electrophilic cyclization of isoxazolines, J. Org. Chem., 60 (1995) 4196–4203.

    Google Scholar 

  33. Kurth, M.J., Rodriguez, M.J. and Olmstead, M.M.,Tandem 1,3-dipolar cycloaddition and electrophilic cyclization reactions — Cyclic ether subunits of polyether antibiotics from unsaturated isoxazolines, J. Org. Chem., 55 (1990) 283–288.

    Google Scholar 

  34. Ford, W.T.,Site isolation organic synthesis in polystyrene networks, In Ford, W.T. (Ed.) Polymeric Reagents and Catalysts, Am. Chem. Soc., Symp. Ser. 308, American Chemical Society, Washington, DC, U.S.A., 1986, pp. 247–285.

    Google Scholar 

  35. Patchornik, A. and Kraus, M.A.,Reactive species mutually isolated on insoluble polymeric carriers. I. The directed monoacylation of esters, J. Am. Chem. Soc., 92 (1970) 7587–7589.

    Google Scholar 

  36. Beebe, X., Chiappari, C.L., Olmstead, M.M., Kurth, M.J. and Schore, N.E.,Polymer-supported synthesis of cyclic ethers: Electrophilic cyclization of tetrahydrofuroisoxazolines, J. Org. Chem., 60 (1995) 4204–4212.

    Google Scholar 

  37. DeWitt, S.H. and Czarnik, A.W,Combinatorial organic synthesis using Parke-Davis's DIVERSOMER method, Acc. Chem. Res., 29 (1996) 114–122.

    Google Scholar 

  38. Armstrong, R.W., Combs, A.P., Tempest, P.A., Brown, S.D. and Keating, T.A.,Multi-component condensation strategies for combinatorial library synthesis, Acc. Chem. Res., 29 (1996) 123–131.

    Google Scholar 

  39. Ellman, J.A.,Design, synthesis, and evaluation of small-molecule libraries, Acc. Chem. Res., 29 (1996) 132–143.

    Google Scholar 

  40. Gordon, E.M., Gallop, M.A. and Patel, D.V.,Strategy and tactics in combinatorial organic synthesis. Application to drug discovery, Acc. Chem. Res., 29 (1996) 144–154.

    Google Scholar 

  41. Still, W.C.,Discovery of sequence-selective peptide binding by synthetic receptors using encoded combinatorial libraries, Acc. Chem. Res., 29 (1996) 155–163.

    Google Scholar 

  42. Hsieh-Wilson, L.C., Xiang, X.-D. and Schultz, P.G.,Lessons from the immune system: From catalysis to material science, Acc. Chem. Res., 29 (1996) 164–170.

    Google Scholar 

  43. Miller, S.M., Simon, R.J., Ng, S., Zuckermann, R.N., Kerr, J.M. and Moos, W.H.,Comparison of the proteolytic susceptibilities of homologous l -amino acid,d-amino acid, and N-substituted glycine peptide and peptoid oligomers, Drug Dev. Res., 35 (1995) 20–32.

    Google Scholar 

  44. Pei, Y. and Moos, W.H.,Post-modification of peptoid side chains: [s+2] Cycloaddition of nitrile oxides with alkenes and alkynes on the solid-phase, Tetrahedron Lett., 35 (1994) 5825–5828.

    Google Scholar 

  45. Brossi, A.,175 years of isoquinoline drugs, Heterocycles, 11 (1978) 521–547.

    Google Scholar 

  46. Lorsbach, B.A., Miller, R.B. and Kurth, M.J.,Reissert-based ‘traceless’ solid-phase synthesis: Isoquinoline and isoxazoline containing heterocycles, J. Org. Chem., 61 (1996) 8716–8717.

    Google Scholar 

  47. Boekelheide, V. and Weinstock, J.,Reissert compounds. Further alkylation studies and a novel rearrangement, J. Am. Chem. Soc., 74 (1952) 660–663.

    Google Scholar 

  48. Hughes, I.,Application of polymer-bound phosphonium salts as traceless supports for solid phase synthesis, Tetrahedron Lett., 37 (1996) 7595–7598.

    Google Scholar 

  49. Plunkett, M.J. and Ellman, J.A.,A silicon-based linker for traceless solid-phase synthesis, J. Org. Chem., 60 (1995) 6006–6007.

    Google Scholar 

  50. Chenera, B., Finkelstein, J.A. and Veber, D.F.,Protodetachable arylsilane polymer linkages for use in solid phase organic synthesis, J. Am. Chem. Soc., 117 (1995) 11999–12000.

    Google Scholar 

  51. Sucholeiki, I.,Solid-phase photochemical C-S bond cleavage of thioethers — A new approach to the solid-phase production of non-peptide molecules, Tetrahedron Lett., 35 (1994) 7307–7310.

    Google Scholar 

  52. Kurth, M.J., Randall, L.A.A. and Takenouchi, K.J.,The solidphase combinatorial synthesis of polyisoxazolines: A two reaction iterative protocol, J. Org. Chem., 61 (1996) 8755–8761.

    Google Scholar 

  53. Mortier, R.M., Paton, R.M., Scott, G. and Stobie, I.,Nitrile sulphides. Part 8. Polymer-bound nitrile sulphides: generation from polymeric 1,3,4-oxathiazol-2-ones, and 1,3-dipolar cycloaddition reactions, Br. Polym. J., 19 (1987) 303–312.

    Google Scholar 

  54. Costero, A.M., Pitarch, M. and Cano, M.L.,Azet-2(3H)-one as a dipolarophile in 1,3-dipolar cycloadditions, J. Chem. Res. (S), (1994) 316–317.

  55. Gavina, F., Costero, A.M. and Andreu, M.R.,Reaction of 4-substituted 2-azetidinone with nucleophiles — Existence and reactivity of 1-azetin-4-one, J. Org. Chem., 55 (1990) 434–437.

    Google Scholar 

  56. Hamper, B.C., Dukesherer, D.R. and South, M.S.,Solid-phase synthesis of proline analogs via a three component 1,3-dipolar cycloaddition, Tetrahedron Lett., 37 (1996) 3671–3674.

    Google Scholar 

  57. Murphy, M.M., Schullek, J.R., Gordon, E.M. and Gallop, M.A.,Combinatorial organic synthesis of highly functionalized pyrrolidines: Identification of a potent angiotensin converting enzyme inhibitor from a mercaptoacyl proline library, J. Am. Chem. Soc., 117 (1995) 7029–7030.

    Google Scholar 

  58. Furka, A., Sebestyen, F., Asgedom, M. and Dibo, G.,General method for rapid synthesis of multicomponent peptide mixtures, Int. J. Pept. Protein Res., 37 (1991) 487–493.

    Google Scholar 

  59. Bicknell, A.J. and Hird, N.W.,Synthesis of a highly functionalized rigid template by solid phase azomethine ylide cycloaddition, Bio. Med. Chem. Lett., 6 (1996) 2441–2444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantorowski, E.J., Kurth, M.J. Dipolar cycloadditions in solid-phase organic synthesis (SPOS). Mol Divers 2, 207–216 (1997). https://doi.org/10.1007/BF01715636

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01715636

Keywords

Navigation