Skip to main content

Structure and properties of TentaGel resin beads: Implications for combinatorial library chemistry

Summary

In view of the widespread use of TentaGel resin beads for the synthesis of combinatorial libraries, the properties of TentaGel resin have been examined using a combination of confocal laser microscopy and NMR spectroscopy. Evidence is presented that trypsin, a 23.5-kDa enzyme, can penetrate to the core of 90-μm TentaGel beads, and that the matrix of such beads permits molecular motion at a similar rate to that in solution. The beads act as a separate gel phase rather than as a porous solid. These conclusions have important implications for the bioassay of on-bead combinatorial chemical libraries.

This is a preview of subscription content, access via your institution.

References

  1. Merrifield, R.B.,Peptide synthesis on a solid polymer, Fed. Proc. Fed. Am. Soc. Exp. Biol., 21 (1962) 412.

    Google Scholar 

  2. Furka, A., Sebestyen, F., Asgedom, M. and Dibo, G.,A general method for rapid synthesis of multicomponent peptide mixtures, Int. J. Pept. Protein Res., 37 (1991) 487–493.

    Google Scholar 

  3. Lam, K.S., Salmon, S.E., Hersh, E.M. and Hruby, V.J.,A new type of synthetic peptide library for identifying ligand-binding activity, Nature, 354 (1991) 82–84.

    Google Scholar 

  4. Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T. and Cuervo, J.H.,Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature, 354 (1991) 84–86.

    Google Scholar 

  5. Lowe, G.,Combinatorial chemistry, Chem. Soc. Rev., 24 (1995) 309–317.

    Google Scholar 

  6. Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gordon, E.M.,Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries, J. Med. Chem., 37 (1994) 1233–1251.

    Google Scholar 

  7. Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, S.A. and Gallop, M.A.,Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies and future directions, J. Med. Chem., 37 (1994) 1385–1401.

    Google Scholar 

  8. Houghten, R.A., Appel, J.R., Blondelle, S.E., Cuervo, J.H., Dooley, C.T. and Pinilla, C.,The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides, Biotechniques, 13 (1992) 413–421.

    Google Scholar 

  9. Rapp, W., Zhang, L. and Bayer, E.,Continuous-flow peptide synthesis on PSPOE-graft-copolymers, In Epton, R. (Ed.) Innovations and Perspectives in Solid-Phase Synthesis, Oxford, U.K., 1989, pp. 205–210.

  10. Bayer, E. and Rapp, W.,Chemistry of Peptides and Proteins, Vol. 3, De Gruyter, Berlin, Germany, 1986, pp. 3–7.

    Google Scholar 

  11. Meldal, M., Auzanneau, F.-I., Hindsgaul, O. and Palcic, M.M.,A PEGA resin for use in the solid-phase chemical-enzymatic synthesis of glycopeptides, J. Chem. Soc. Ser. Chem. Commun., (1994) 1849–1850.

  12. Renil, M. and Meldal, M.,Synthesis and application of a PEGA polymeric support for high capacity continuous-flow solid-phase peptide synthesis, Tetrahedron Lett., 36 (1995) 4647–4650.

    Google Scholar 

  13. Lowe, G. and Quarreil, R.,Determining Sn′ specificities of serine proteinases using combinatorial peptide libraries, and evidence that enzymes can penetrate TentaGel resin beads, In Epton, R. (Ed.) Innovations and Perspectives in Solid-Phase Synthesis: 4th International Symposium, Edinburgh, U.K., 1995, in press.

  14. Lowe, G. and Quarrell, R.,Peptide inhibitors of serine proteinases identified by screening targeted SPCLs of CMTI-I mutants, In Epton, R. (Ed.) Innovations and Perspectives in Solid-Phase Synthesis: 3rd International Symposium, Oxford, U.K., 1993, pp. 377–380.

  15. Lichtman, J.W.,Confocal microscopy, Sci. Am., August (1994) 30–35.

  16. Quarrell, R.,The inhibition of serine proteinases, and the development of a combinatorial library approach, Ph.D. Thesis, University of Oxford, Oxford, U.K., 1994, p. 163.

    Google Scholar 

  17. Kupryszewski, G., Wilusz, T., Polanowski, A., Rolka, K. and Ragnarsson, U.,Synthesis of trypsin inhibitor CMTI-I from squash seeds (Cucurbita maxima), Pol. J. Chem., 61 (1987) 789–793.

    Google Scholar 

  18. Polanowski, A., Otlewski, I., Wilusz, T., Wilimowska-Pelc, A. and Leluk, J.,A new family of serine proteinase inhibitors from squash seeds, Biol. Zentralbl, 107 (1988) 45–49.

    Google Scholar 

  19. Wieczorek, M., Otlewski, J., Cook, J., Parks, K., Leluk, J., Wilimowska-Pelc, A., Polanowski, A., Wilusz, T. and Laskowski, M.J.,The squash family of serine proteinase inhibitors. Amino acid sequences and association equilibrium constants for inhibitors from squash, summer squash, zucchini and cucumber seeds, Biochem. Biophys. Res. Commun., 126 (1985) 646–652.

    Google Scholar 

  20. Mann, K. and Fish, W.,Protein polypeptide chain molecular weights by gel chromatography in guanidinium chloride, Methods Enzymol., 26 (1972) 28–42.

    Google Scholar 

  21. Roberts, B.L., Markland, W., Ley, A.C., Kent, R.B., White, D.W., Guterman, S.K. and Ladner, R.C.,Directed evolution of a protein: Selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage, Proc. Natl. Acad. Sci. USA, 89 (1992) 2429–2433.

    Google Scholar 

  22. Akiyama, S., Nakasuji, K. and Nakagawa, M.,Linear conjugated systems bearing some aromatic terminal groups. IV. The syntheses of some diarylacetylenes, Bull. Chem. Soc. Jpn., 44 (1971) 2231–2236.

    Google Scholar 

  23. Fitch, W.L., Detre, G., Holmes, C.P., Shoolery, I.N. and Keifer, P.A.,High-resolution 1 H NMR in solid-phase organic synthesis, J. Org. Chem., 59 (1994) 7955–7956.

    Google Scholar 

  24. Sucholeiki, I.,Polymer-assisted organic synthesis, In Epton, R. (Ed.) Innovations and Perspectives in Solid-Phase Synthesis: 4th International Symposium, Edinburgh, U.K., 1995, in press.

  25. Bayer, E., Albert, K., Willisch, H., Rapp, W. and Hemmasi, B.,13 C NMR relaxation times of a tripeptide methyl ester and its polymer-bound analogues, Macromolecules, 23 (1990) 1937–1940.

    Google Scholar 

  26. Dixon, K.R., In Mason, J. (Ed.) Multinuclear NMR, Plenum Press, New York, NY, 1987, pp. 369–402.

    Google Scholar 

  27. Vagner, J., Barany, G., Sepetov, N.K., Krchňák, V., Lebl, M. and Lam, K.S.,Novel methodology for differentiation of ‘surface’ and ‘interior’ areas of polyethylene glycol-polystyrene (PEG-PS) supports: Application of ‘library’ screening procedures, In Epton, P.R. (Ed.) Innovations and Perspectives in Solid-Phase Synthesis: 3rd International Symposium, Oxford, U.K., 1993, pp. 347–352.

  28. Blow, D.M., In Boyer, P.D. (Ed.) The Enzymes, Vol. III, Academic Press, New York, NY, 1971, pp. 185–248.

    Google Scholar 

  29. Stroud, R.M. and Dickerson, R.E.,The structure of bovin trypsin: Electron-density maps of the inhibited enzyme at 5 Å and at 2.7 Å resolution, J. Mol. Biol., 83 (1974) 195–208.

    Google Scholar 

  30. Bode, W. and Schwager, P.,The refined crystal structure of bovine β-trypsin at 1.8 Å resolution. II, J. Mol. Biol., 98 (1975) 693–717.

    Google Scholar 

  31. Schwert, G.W., J. Biol. Chem., 179 (1949) 655–664.

    Google Scholar 

  32. Sarfare, P.S., Kegeles, G. and Kwon-Rhee, S.J.,Relationship between active sites and polymerization sites in α-chymotrypsin, Biochemistry, 6 (1967) 1389–1393, and references cited therein.

    Google Scholar 

  33. Rao, M.S. and Kegelas, G.,An ultracentrifuge study of the polymerisation of α-chymotrypsin, J. Am. Chem. Soc., 80 (1958) 5724–5729.

    Google Scholar 

  34. Eggenweiler, H.-M. and Bayer, E.,Gel phase 13 C NMR monitoring of solid-phase glycoside synthesis, In Epton, R. (Ed.) Innovations and Perspectives in Solid-Phase Synthesis: 4th International Symposium, Edinburgh, U.K., 1995, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quarrell, R., Claridge, T.D.W., Weaver, G.W. et al. Structure and properties of TentaGel resin beads: Implications for combinatorial library chemistry. Mol Divers 1, 223–232 (1996). https://doi.org/10.1007/BF01715526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01715526

Keywords

  • Combinatorial libraries
  • TentaGel resin beads
  • 31P NMR
  • Spin-lattice relaxation
  • Trypsin
  • Confocal scanning laser microscope