Advertisement

Infection

, Volume 22, Issue 6, pp 395–400 | Cite as

Infections related to the menstrual cycle. A study of five otherwise healthy women with recurrent abscesses and a reviw of the literature

  • Merete Weischer
  • Alice Friis-Møller
  • Annie Bremmelgaard
Originalia

Summary

The purpose of the study was to investigate thein vitro bactericidal function of blood polymorphonuclear leucocytes (PMN) in various phases of the menstrual cycle from otherwise healthy women with recurrent cutaneous abscesses related to the premenstrual phase of the menstrual cycle compared with the bactericidal activity of PMN from healthy women with no inconveniences related to the menstrual cycle. The bactericidal activity againstStaphylococcus aureus 502A was investigated and when possible against the patients' own strain. No variation in bactericidal activity was observed during the different phases of the menstrual cycle. PMN from five women with recurrent abscesses related to the premenstrual phase tended to kill fewerS. aureus 502A than PMN from three women in the control group. The literature of immunological defence mechanisms and the occurrence of infections related to the menstrual cycle is reviewed.

Keywords

General Practice Bactericidal Activity Defence Mechanism Family Medicine Menstrual Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Infektionen mit Bezug zum Menstruationszyklus. Untersuchung an fünf sonst gesunden Frauen mit rezidivierenden Abszessen und Literaturübersicht

Zusammenfassung

Bei fünf Frauen mit rezidivierenden Abszessen der Haut mit Bezug zum Menstruationszyklus bei sonstiger Gesundheit wurde die bakterizide Funktion der Granulozyten in verschiedenen Phasen des Menstruationszyklusin vitro untersucht. Die bakterizide Aktivität der Granulozyten wurde mit derjenigen von Frauen ohne Menstruations-assoziierte Störungen verglichen. Die bakterizide Aktivität wurde gegenüberStaphylococcus aureus 502A und nach Möglichkeit auch gegenüber einem von der jeweiligen Patientin isolierten Stamm geprüft. In den verschiedenen Phasen des Menstruationszyklus fanden sich keine Unterschiede in der bakteriziden Aktivität. Granulozyten von Frauen mit rezidivierenden Abszessen während der prämenstruellen Phase hatten tendentiell wenigerS. aureus 502A abgetötet als Granulozyten von drei Frauen der Kontrollgruppe. Die Literatur zu immunologischen Abwehrmechanismen und zu Infektionen in Assoziation zum Menstruationszyklus wird in einer Übersicht dargestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Selvaraj, R. J., Zgliczynski, J. M., Paul, B. B., Mitchell, G. W., Sbarra, A. J. The role of estrogens in myeloperoxidase-mediated antimicrobial mechanisms. J. Reticuloendothel. Soc. 28 (1980) 333–341.Google Scholar
  2. 2.
    Klebanoff, S. J. Effects of estrogens on the myeloperoxidase-mediated antimicrobial system. Infect. Immun. 25 (1979) 153–156.Google Scholar
  3. 3.
    Sweet, R. L., Blankfort-Doyle, M., Robbie, M. O., Schacter, J. The occurrence of chlamydial and gonococcal salpingitis during the menstrual cycle. JAMA 255 (1986) 2062–2064.Google Scholar
  4. 4.
    Hedström, S. A. Recurrent anaerobic skin abscesses. Acand. J. Infect. Dis. 14 (1982) 241–242.Google Scholar
  5. 5.
    Friedmann, E., Katcher, Aa. H., Brightman, V. J. Incidence of recurrent herpes labialis and upper respiratory infection: a prospective study of the influence of biologic, social, and psychologic predictors. Oral. Surg. 43 (1977) 873–878.Google Scholar
  6. 6.
    Segal, A. L., Katcher, Aa. H., Brightman, V. J., Miller, M. F. Recurrent herpes labialis, recurrent aphthous ulcers, and the menstrual cycle. J. Dent. Res. 53 (1974) 797–803.Google Scholar
  7. 7.
    Lautrop, H., Høiby, N., Bremmelgaard, A., Korsager, B. Bakteriologiske undersogelsesmetoder. FADL's Forlag, Copenhagen 1979.Google Scholar
  8. 8.
    Cochran, W. G. Ratio estimates. In:Cochran, W. G. Sampling techniques Johan Wiley & Sons, Inc., New York 1953, pp. 111–139.Google Scholar
  9. 9.
    Friedmann, E., Katcher, Aa., H., Brightman, V. J. A prospective study of the distribution of illness within the menstrual cycle. Motivation Emotion 2 (1978) 355–368.Google Scholar
  10. 10.
    Cohen, M. S., Britigan, B. E., French, M., Bean, K. Preliminary observations on lactoferrin secretion in human vaginal mucus: variation during the menstrual cycle, evidence of hormonal regulation, and implications for infection withNeisseria gonorrhoeae. Am. J. Obstet. Gynecol. 157 (1987) (1122–1125.Google Scholar
  11. 11.
    Forslin, L., Danielsson, D. In vitro studies of the adherence ofNeisseria gonorrhoeae and other urogenital bacterial to vaginal and uroepithelial cells, with special regard to the menstrual cycle. Gynecol. Obstet. Invest. 11 (1980) 327–340.Google Scholar
  12. 12.
    Bell, T. A. Gonorrhea in female adolescents: potential analogies to toxic shock syndrome. Ann. Intern. Med. 96 (1982) 924–925.Google Scholar
  13. 13.
    Reid, G., Brooks, H. J. L., Bacon, D. F. In vitro attachment ofEscherichia coli to human uroepithelial cells: variation in receptivity during the menstrual cacle and pregnancy. J. Infect. Dis. 148 (1983) 412–421.Google Scholar
  14. 14.
    Rice, P. A., Schachter, J. Pathogenesis of pelvic inflammatoy disease. What are the questions? JAMA 266 (1991) 2587–2593.Google Scholar
  15. 15.
    Washington, A. E., Gove, S. Schachter, J., Sweet, R. L. Oral contraceptives,Chlamydia trachomatis infection, and pelvic inflammatory disease. JAMA 253 (1985) 2246–2250.Google Scholar
  16. 16.
    Wølner-Hanssen, P., Eschenbach, D. A., Paavonen, J., Kiviat, N. Stevens, C. E., Critchlow, C., DeRouen, T., Homes, K. K. Decreased risk of symptomatic chlamydial pelvic inflammatory disease associated with oral contraceptive use. JAMA 263 (1990) 54–59.Google Scholar
  17. 17.
    Davis, J. P., Chesney, P. J., Wand, P. J., LaVenture, M. Toxic-shock syndrome. Epidermiologic features, recurrence, risks factors, and prevention. N. Engl. J. Med. 303 (1980) 1429–1435.Google Scholar
  18. 18.
    Shands, K. N., Schmid, G. P., Dan, B. B., Blum, D., Guidotti, R. J., Hargrett, N. T., Anderson, R. L., Hill, D. L., Broome, C. V., Band, J. D. Fraser, D. W. Toxic-shock syndrome in menstruating women. N. Engl. J. Med. 303 (1980) 1436–1442.Google Scholar
  19. 19.
    Davis, J. P., Vergeront, J. M., Chesney, P. J. Possible host-defense mechanisms in toxic shock syndrome. Ann. Intern. med. 96 (1982) 286–291.Google Scholar
  20. 20.
    Winkler, J., Block, C., Leibovici, L., Faktor, J., Pitlik, S. D. Nasal carriage ofStaphylococcus aureus correlation with hormonal status in women. J. Infect. Dis. 162 (1990) 1400–1402.Google Scholar
  21. 21.
    Morley, A. A. A neutrophil cycle in healthy individuals. Lancet ii (1966) 1220–1222.Google Scholar
  22. 22.
    Mettler, L, Shirwani, D. The blood count during the ovarian cycle. Am. J. Obstet. Gynecol. 119 (1974) 1038–1043.Google Scholar
  23. 23.
    Bain, B. J., England, J. M. Variations in leucocyte count during menstrual cycle. Br. Med. J. 2 (1975) 473–475.Google Scholar
  24. 24.
    Fisch, I. R., Freedman, S. H. Smoking, oral contraceptives, and obesity. Effects on white blood cell count. JAMA 234 (1975) 500–506.Google Scholar
  25. 25.
    Mathur, S., Mathur, R. S., Goust, J. M., Williamson, H. O., Fundenberg, H. H. Cyclic variations in white cell subpopulations in the human menstrual cycle: correlations with progesterone and estradiol. Clin. Immunol. Immunopathol. 13 (1979) 246–253.Google Scholar
  26. 26.
    Vartiainen, E., Zilliacus, H. Red and white blood counts during the menstrual cycle. Ann. Chir. Gynaecol. Fenniae. 57 (1968) 287–392.Google Scholar
  27. 27.
    Tumbo-Oeri, A. G. T and B lymphocyte populations in peripheral blood during the menstrual cycle in normal Kenyan women. East African Med. J. 62 (1985) 90–95.Google Scholar
  28. 28.
    Buyon, J. P., Korchak, H. M., Rutherford, L. E., Ganguly, M., Weissmann, G. Female hormones reduce neutrophil responsivenessin vitro. Arthritis Rheum. 27 (1984) 623–630.Google Scholar
  29. 29.
    Mallery, S. R. Zeligs, B. J., Ramwell, P. W. Bellanti, J. A. Gender-related variations and interaction of human neutrophil cyclooxygenase and oxidative burst metabolites. J. Leuc. Biol. 40 (1986) 133–146.Google Scholar
  30. 30.
    Klebanoff, S. J. Estrogen binding by leukocytes during phagocytosis. J. Exp. Med. 145 (1977) 983–998.Google Scholar
  31. 31.
    Wandall, J. H. Function of polymorphnuclear neutrophilic leucocytes. Acta. Patho. Microbiol. Immunol. Scand. Sect. C90 (1982) 7–13.Google Scholar
  32. 32.
    Wandall, J. H. Leucocyte mobilization and functionin vitro of blood and exudative leucocytes after inguinal herniotomy. Br. J. Surg. 69 (1982) 669–672.Google Scholar
  33. 33.
    Wandall, J. H. Neutrophilic granulocyte function. Quantitative leucocyte mobilization and function of circulating and exudative neutrophils. Dan. Med. Bull. 35 (1988) 237–252.Google Scholar
  34. 34.
    Repine, J. E., Clawson, C. C. Quantitative measurement of the bactericidal capability of neutrophils from patients and carriers of chronic granulomatous disease. J. Lab. Clin. Med. 90 (1977) 522–528.Google Scholar
  35. 35.
    Repine, J. E., Clawson, C. C., Goetz, F. C. Bactericidal function of neutrophils from patients with acute bacterial infections and from diabetics. J. Infect. Dis. 142 (1980) 869–875.Google Scholar
  36. 36.
    Messner, R. P., Reed, W. P., Palmer, D. L., Bolin, R. B., Davis, A. T., Quie, P. G. A transient defect in leucocyte bactericidal capacity. Clin. Immunol. Immunopathol. 1 (1973) 523–532.Google Scholar
  37. 37.
    Solberg, C. O., Hellum, K. B. Neutrophil granulocyte function in bacterial infections. Lancet ii (1972) 727–729.Google Scholar
  38. 38.
    Repine, J. E. Clawson, C. C., Burchell, H. B., White, J. G. Reversible neutrophil defect in patients with bacterial endocarditis. J. Lab. Clin. Med. 88 (1976) 780–787.Google Scholar
  39. 39.
    Alexander, J. W., Wixson, D.: Neutrophil dysfunction and sepsis in burn injury. Surg. Gynecol. Obstet. (1970) 431–438.Google Scholar
  40. 40.
    Roilides, E., Mertins, S., Eddy, J., Walsh, T. J., Pizzo, P. A., Rubin, M. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal afterin vitro exposure to granulocyte-macrophage colony-stimulating factor. J. Pediatr. 117 (1990) 531–540.Google Scholar
  41. 41.
    Welch, W. D. Halothane reversibly inhibits human neutrophil bacterial killing. Anesthesiology 55 (1981) 650–654.Google Scholar
  42. 42.
    Alexander, J. W., Dionigi, R., Meakins, J. L. Periodic variation in the antibacterial function of human neutrophils and ist relationship to sepsis. Ann. Surg. 173 (1971) 206–213.Google Scholar
  43. 43.
    Berger, E. M., Harada, R. N., Vatter, A. E., Bowman, C. M., Repine, J. E. Cyclical abnormalities in the bactericidal function, superoxide production, and lysozyme activity of neutrophils obtained from a healthy woman during menstruation reversal by pretreatment with aspirin. J. Infect. Dis. 149 (1984) 413–419.Google Scholar
  44. 44.
    Berger, E. M., Lockey, J. E., Aldrich, V. H., Repine, J. E. Increased incidence of menstruation-associated bactericidal defects in neutrophils from women who have recovered from toxic shock syndrome. Inflammation 10 (1986) 471–480.Google Scholar
  45. 45.
    Berger, E. M., Beehler, C. J. Repine, J. E. Persistent bactericidal defect in neutrophils from a young woman who recovered from toxic shock syndrome. Inflammation 10 (1986) 463–469.Google Scholar
  46. 46.
    Wedren, H., Holm, S. E., Bergman, B. Can dereased phagocytosis and killing of autologous gram-positive bacteria explain the finding of gram-positive bacteria in “non-bacterial prostatitis”? Acta. Path. Microbiol. Immunol. Scand. Sect. B 95 (1987) 75–78.Google Scholar
  47. 47.
    Fox, J. P., Rainey, H. S., Carrie, E. H., Ray, C. G., Patterson, M. J. Rubella vaccine in postpubertal women. JAMA 236 (1976) 837–843.Google Scholar
  48. 48.
    Nakazono, N., Fujimoto, S., Wakisaka, A., Ishii, K., Ichinoe, K., Aizawa, M. Factors associated with clinical reactions to rubella vaccination in women. Int. J. Gynaecol. Obstet. 25 (1987) 207–216.Google Scholar
  49. 49.
    Hrushesky, W. J. M., Bluming, A. Z., Gruber, S. A., Sothern, R. B. Menstrual influence on surgical cure of breast cancer. Lancet ii (1989) 949–952.Google Scholar
  50. 50.
    Badwe, R. A., Gregory, W. M., Chaudary, M. A., Richards, M. A., Bentley, A. E., Rubens, R. D., Fentiman, I. S. Timing of surgery during menstrual cycle and survival of premenopausal women with operable breast cancer. Lancet 337 (1991) 1261–1264.Google Scholar

Copyright information

© MMV Medizin Verlag GmbH München 1994

Authors and Affiliations

  • Merete Weischer
    • 1
  • Alice Friis-Møller
    • 1
  • Annie Bremmelgaard
    • 1
  1. 1.Dept. of Clinical MicrobiologyFrederiksberg HospitalFrederiksbergDenmark

Personalised recommendations