Skip to main content

Der Einfluß von PEEP-Beatmung auf Gesamthämodynamik und regionale Organdurchblutung

The effect of PEEP ventilation on hemodynamics and regional blood flow

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

The benficial effects of PEEP on lung function may be counteracted by its hemodynamic sequenlae induced by a reduction of venous return due to the elevated intrathoracic pressure, and by an increased right ventricular afterload secondary to the rise of pulmonary vascular resistance. PEEP redistributes cardiac output in favor of brain, heart, adrenals and intestines, whereas the perfusion of stomach, pancreas and thyroid is diminished out of proportion to the fall of cardiac output. Total renal blood flow is relatively little affected; however, redistribution of intrarenal blood flow will result in a marked salt-water-retention. Reduction of hepatic artery flow, at higher levels of PEEP, may jeopardice liver tissue oxygenation. — Under clinical conditions, individual differences regarding preexisting cardiopulmonary and peripheral-vascular diseases may modify the PEEP-induced hemodynamic alterations in a wide range.

Zusammenfassung

Den günstigen Wirkungen von PEEP auf die Lungenfunktion stehen ausgeprägte hämodynamische Nebenwirkungen gegenüber, deren Ursachen vor allem in einer Verminderung des venösen Rückflusses bei erhöhtem intrathorakalem Druck sowie in einer Zunahme der rechtsventrikulären Nachlast aufgrund des erhöhten pulmonalen Gefäßwiderstandes zu sehen sind. PEEP führt zu einer Umverteilung des reduzierten Herzzeitvolumens zugunsten von Gehirn, Herz, Nebennieren und Darm, während die Durchblutung von Magen, Pankreas und Schilddrüse überproportional vermindert wird. Die Nierengesamtdurchblutung nimmt in der Regel nur geringfügig ab; eine Änderung der intrarenalen Hämodynamik bedingt jedoch eine Beeinträchtigung der Salz-Wasser-Ausscheidung. Die arterielle Durchblutung der Leber kann bei höheren Stufen von PEEP soweit reduziert werden, daß eine ausreichende O2-Versorgung nicht mehr gewährleistet ist. Unter klinischen Bedingungen können individuell unterschiedliche Voraussetzungen die Änderungen von globaler und regionaler Hämodynamik im günstigen wie im ungünstigen Sinne modifizieren.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    Aidinis SJ, Lafferty J, Shapiro HM (1976) Intracranial responses to PEEP. Anesthesiology 45:275

    Google Scholar 

  2. 2.

    Ashbaugh DG, Petty TL (1973) Positive end-expiratory pressure. Physiology, indications and contraindications. J Thorac Cardiovasc Surg 65:165

    Google Scholar 

  3. 3.

    Askitopoulou H, Sykes MK, Young C (1978) Cardiorespiratory effects of increased airway pressure during controlled and spontaneous breathing after cardiac surgery. Br J Anaesth 50:1203

    Google Scholar 

  4. 4.

    Augustin HJ, Bischoff K, Engels T (1979) Der Einfluß von Dopamin auf die Nierenfunktion während kontinuierlicher Überdruckbeatmung (PEEP). Anaesthesist 28:159

    Google Scholar 

  5. 5.

    Benzer H, Haider W, Kundi M, Laczkovics A, Todt W (1977) Die Kombination von kontinuierlicher Überdruckbeatmung (PEEP) und Dopamin beim postkardiochirurgischen Patienten. Herz 2:465

    Google Scholar 

  6. 6.

    Berk JL, Hagen JF, Tong RK, Maly G (1977) The use of dopamine to correct the reduced cardiac output resulting from positive end-expiratory pressure. A two-edged sword. Crit Care Med 5:269

    Google Scholar 

  7. 7.

    Beyer J (1980) Tierexperimentelle Untersuchungen zur regionalen Organdurchblutung und lokalen Sauerstoffversorgung bei Beatmung mit positiv-endexpiratorischem Druck. Habilitationsschrift

  8. 8.

    Beyer J, Conzen P, Schosser R, Meßmer K (1980) The effect of PEEP ventilation on hemodynamics and regional blood flow with special regard to coronary blood flow. Thorac Cardiovasc Surgeon 28:128

    Google Scholar 

  9. 9.

    Beyer J, Schosser R, Meßmer K (1980) Coronary blood flow during PEEP ventilation. Vortr. a.d. XI. Europ. Conf. Microcirculation, Garmisch-Partenkirchen, 14.–19.9. 1980

  10. 10.

    Beyer J, Schosser R, Conzen P, Funk W, Beckenlechner P, Meßmer K (1980) Zur regionalen Organdurchblutung des Splanchnikusgebietes bei Beatmung mit positiv-endexpiratorischem Druck. Langenbecks Arch Chir [Suppl]:239

    Google Scholar 

  11. 11.

    Bjursted H, Rosenhamer G, Lindmorg B, Hesser CM (1979) Respiratory and circulatory responses to sustained positive pressure breathing and exercise in man. Acta Physiol Scand 105:204–214

    Google Scholar 

  12. 12.

    Bricard C, Salmon O, Monsallier JF (1980) Influence of positive end-expiratory pressure ventilation (PEEP) on myocardial contractility in man (Abstr.) Intensive Care Med 6:47

    Google Scholar 

  13. 13.

    Buckberg GD, Luck J, Hoffmann JIE, Payne B (1970) Measurement of total and regional coronary flow in conscious and anesthetized animals (Abstr.) Circulation [Suppl] 42:III-140

    Google Scholar 

  14. 14.

    Buckberg GD, Luck JC, Payne DB, Hoffmann JIE, Archie JP, Fixler DE (1971) Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol 31:598–604

    Google Scholar 

  15. 15.

    Cassidy SS, Robertson CH JR, Pierce AK, Johnson RL JR (1978) Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol 44:743–750

    Google Scholar 

  16. 16.

    DeLemos RA, Tomasovic JT (1978) Effects of positive pressure ventilation on cerebral blood flow in the newborn infant. Clin Perinatol 5:395–409

    Google Scholar 

  17. 17.

    Eder M, Castrup HJ (1969) Die gastrointestinale Blutung aus der Sicht des Pathologen. Chirurg 40:97–100

    Google Scholar 

  18. 18.

    Elkins RC, Peyton MD, Hinshaw LB, Greenfield LJ (1974) Clinical hemodynamic and respiratory responses to graded positive end-expiratory pressure. Surg Forum 25:226

    Google Scholar 

  19. 19.

    Fewell JE, Abendschein DR, Carlson CJ, Rapaport E, Murray JF (1980) Mechanism of decreased right and left ventricular enddiastolic volumes during continuous positive-pressure ventilation in dogs. Circ Res 47:467–472

    Google Scholar 

  20. 20.

    Gallagher TJ, Civetta JM, Kirby RR (1978) Terminology update: optimal PEEP. Crit Care Med 6:323–326

    Google Scholar 

  21. 21.

    Gammanpila S, Bevan DR, Bhudu R (1977) Effect of positive and negative expiratory pressure on renal function. Br J Anaesth 49:199

    Google Scholar 

  22. 22.

    Grindlinger GA, Manny J, Justice B, Shepro D, Hechtmann HB (1979) Presence of negative inotropic agents in canine plasma during positive end-expiratory pressure. Circ Res 25:460–467

    Google Scholar 

  23. 23.

    Hall SV, Johnson EE, Hedley-Whyte J (1974) Renal hemodynamics and function with continuous positive-pressure ventilation in dogs. Anesthesiology 41:452–460

    Google Scholar 

  24. 24.

    Harboe S, Levang OW, Hysing ES (1979) The effect of positive endexpiratory pressure after three types of open heart surgery. Acta Anaesthesiol Scand 23:165–176

    Google Scholar 

  25. 25.

    Hemmer M, Suter PM (1979) Treatment of cardiac and renal effects of PEEP with dopamine in patients with acute respiratory failure. Anaesthesiology 50:399–403

    Google Scholar 

  26. 26.

    Hinshaw LB, Reins DA, Wittmers L (1965) Venous-arteriolar response in the canine liver. Proc Soc Expl Biol Med 118:979–982

    Google Scholar 

  27. 27.

    Hobelmann CF, Smith DE, Vorgillo RW, Shapiro AR, Peters RM (1974) Left atrial and pulmonary artery wedge pressure difference with positive end-expiratory pressure. Surg Forum 25:232

    Google Scholar 

  28. 28.

    Hoffman JIE, Buckberg GD (1978) The myocardial supply: demand ratio — a critical review. Am J Cardiol 41:327

    Google Scholar 

  29. 29.

    Jacobson ED (1965) The circulation of the stomach. Gastroenterology 48:85–109

    Google Scholar 

  30. 30.

    Järnberg PO, DeVillota ED, Eklund J, Grandberg PO (1978) Effects of positive end-expiratory pressure on renal function. Acta Anaesthesiol Scand 22:508–514

    Google Scholar 

  31. 31.

    Johnson EE, Hedley-Whyte J (1972) Continuous positive-pressure ventilation and portal flow in dogs with pulmonary edema. J Appl Physiol 33:385–389

    Google Scholar 

  32. 32.

    Kaihara S, Rutherford RB, Schwentker EP, Wagner HN (1969) Distribution of cardiac output in experimental hemorrhagic shock in dogs. J Appl Physiol 27:218–222

    Google Scholar 

  33. 33.

    Katz AM (1977) Application ofthe Starling resistor concept to lungs during CPPV. Crit Care Med 5:67–72

    Google Scholar 

  34. 34.

    Kessler M, Höper J, Krumme BA (1976) Monitoring of tissue perfusion and cellular function. Anesthesiology 45:184

    Google Scholar 

  35. 35.

    Kilcoyne MM, Cannon PJ (1971) Neural and humoral influences on intrarenal blood flow distribution during thoracic caval occlusion. Am J Physiol 220:1231–1237

    Google Scholar 

  36. 36.

    Kim YD, Devereux DF, MacNamara TE (1978) An unusual cardiovascular response to PEEP. Anesthesiology 48:365

    Google Scholar 

  37. 37.

    Kirby RR, Downs JB, Civetta JM, Modell JH, Dannemiller FJ, Klein EF, Hodges M (1975) High level positive end-expiratory pressure (PEEP) in acute respiratory insufficiency. Chest 67:156

    Google Scholar 

  38. 38.

    Kumar A, Falke KJ, Geffin B, Aldredge CF, Laver MB, Löwenstein E, Pontoppidan H (1970) Continuous positive-pressure ventilation in acute respiratory failure. N Engl J Med 283:1430

    Google Scholar 

  39. 39.

    Kumar A, Pontoppidan H, Barratz RA, Laver MB (1974) Inappropriate response to increased plasma ADH during mechanical ventilation in acute respiratory failure. Anesthesiology 40:215

    Google Scholar 

  40. 40.

    Laver MB, Strauss HW, Pohost GM (1979) Right and left ventricular geometry: adjustments during acute respiratory failure. Crit Care Med 7:509–519

    Google Scholar 

  41. 41.

    Lenfant C, Howell BJ (1960) Cardiovascular adjustments in dogs during continuous pressure breathing. J Appl Physiol 15:425–428

    Google Scholar 

  42. 42.

    Lübbers D (1977) Die Bedeutung des lokalen Gewebesauerstoffdruckes und des PO2-Histogramms für die Beurteilung der Sauerstoffversorgung eines Organes. Prakt Anaesth 12:184–193

    Google Scholar 

  43. 43.

    Lutch JS, Murray JF (1972) Continuous positive pressure ventilation: effects on systemic oxygen transport and tissue oxygenation. Ann Intern Med 76:193

    Google Scholar 

  44. 44.

    Manny J, Patten MT, Liebmann PR, Hechtmann HB (1978) The association of lung distension, PEEP and biventricular failure. Ann Surg 187:151–157

    Google Scholar 

  45. 45.

    Manny J, Justice R, Hechtmann HB (1979) Abnormalities in organ blood flow and its distribution during positive end-expiratory pressure. Surgery 85:425–432

    Google Scholar 

  46. 46.

    Marquez JM, Douglas ME, Downs JB, Wu WH, Mantini EL, Kuck EJ, Calderwood HW (1979) Renal function and cardiovascular responses during positive airway pressure. Anesthesiology 50:393–398

    Google Scholar 

  47. 47.

    Meßmer K, Beyer J, Funk W (1980) Nutritional blood flow and tissue PO2, during mechanical ventilation with PEEP. In: Lübbers DW, Kessler M (eds): Significance of PO2 histograms for the comprehension of oxygen supply and microcirculation of an organ. pp 2204–2221

  48. 48.

    Moore ES, Galvez MB, Paton JB, Fisher DE, Behrman RE (1974) Effects of positive pressure ventilation on intrarenal blood flow in infant primates. Pediatr Res 8:792

    Google Scholar 

  49. 49.

    Patten MT, Liebman PR, Hechtman HB (1977) Humorally mediated decreases in cardiac output associated with positive end-expiratory pressure. Microvasc Res 13:137–139

    Google Scholar 

  50. 50.

    Perschau RA, Pepine CJ, Nichols WW, Downs JB (1979) Instantaneous blood flow responses to posotive end-expiratory pressure with spontaneous ventilation. Circulation 59:1312–1218

    Google Scholar 

  51. 51.

    Pichlmayr I, Mascher E, Sippel R (1974) Untersuchungen zur Wirkung unterschiedlicher Beatmungsformen auf arterielle Blutgaswerte, periphere Kreislaufgrößen und die Gehirndurchblutung. Anaesthesist 23:535

    Google Scholar 

  52. 52.

    Pöhler E (1979) Auswirkungen der kontinuierlichen Überdruckbeatmung auf die Herzinsuffizienz kardiochirurgischer Patienten. Intensive Care Med 16:278–281

    Google Scholar 

  53. 53.

    Powers SR, Mannal R, Neclerio M, English M, Clifford M, Leather R, Ueda H, Williams G, Custead W, Dutton R (1973) Physiologic consequences of positive end-expiratory pressure (PEEP) ventilation. Ann Surg 178:265–272

    Google Scholar 

  54. 54.

    Powers SR (1974) The use of positive end-expiratory pressure (PEEP) for respiratory support. Surg Clin North Am 54:1125

    Google Scholar 

  55. 55.

    Powers SR, Dutton RE (1975) Correlation of positive end-expiratory pressure with cardiovascular performance. Crit Care Med 3:64–68

    Google Scholar 

  56. 56.

    Prewitt RM, Wood LDH (1979) Effect of positive end-expiratory pressure on ventricular function in dogs. Am J Physiol 236:H534-H544

    Google Scholar 

  57. 57.

    Priebe HJ, Heiman JC, Hedley-Whyte J (1980) Effects of renal and hepatic venous congestion on renal function in the presence of low and normal cardiac output in dogs. Circ Res 47:883–890

    Google Scholar 

  58. 58.

    Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology 42:45–55

    Google Scholar 

  59. 59.

    Sarnoff SJ, Braunwald E, Welch GH, Case RB, Stainsby WN, Macruz R (1958) Hemodynamic determinants of oxygen consumption in the heart with special references to the tension-time-index. Am J Physiol 192:148

    Google Scholar 

  60. 60.

    Scharf SM, Ingram RH (1977) Influence of abdominal pressure and sympathetic vasoconstriction on the cardiovacular response to positive end-experitory pressure. Am Rev Respir Dis 116:661

    Google Scholar 

  61. 61.

    Suter PM, Demottaz V, Hemmer M (1978) Postoperative Beatmungstechnik nach Herzoperationen. Auswirkungen von PEEP und CPAP auf Lungenfunktion und Hämodynamik. Herz 3:198–205

    Google Scholar 

  62. 62.

    Suter PM, Fairley HB, Isenburg MD (1975) Optimum end-expiratory airway pressure in patients with acute respiratory failure. N Engl J Med 292:284

    Google Scholar 

  63. 63.

    Sykes MK, Adams AP, Finley WEI, McCormick W, Economides A (1970) The effects of variation in end-expiratory inflation pressure on cardiorespiratory function on normo-, hypo- and hypervolemic dogs. Br J Anaesth 42:669–677

    Google Scholar 

  64. 64.

    Thurau K (1964) Renal hemodynamics. Am J Med 36:698–719

    Google Scholar 

  65. 65.

    Trichet B, Falke K, Togut A, Laver MB (1975) The effect of pre-existing pulmonary vascular disease on the response to mechanical ventilation with PEEP following open-heart surgery. Anesthesiology 42:56

    Google Scholar 

  66. 66.

    Tucker HJ, Murray JF (1973) Effects of end-expiratory pressure on organ blood flow in normal and diseased dogs. J Appl Physiol 34:573–577

    Google Scholar 

  67. 67.

    Vatner SV (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47:201–207

    Google Scholar 

  68. 68.

    Wechsler AS, Auerbach BJ, Graham TC, Sabiston DC (1974) Distribution of intramyocardial blood flow during pericardial tamponade. J Thorac Cardiovasc Surg 68:847–856

    Google Scholar 

  69. 69.

    Wildsmith JAW, Marshall RL (1978) Positive end-expiratory pressure. Immediate hemodynamic effects during artificial ventilation. Anaesthesia 33:20

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Beyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beyer, J., Meßmer, K. Der Einfluß von PEEP-Beatmung auf Gesamthämodynamik und regionale Organdurchblutung. Klin Wochenschr 59, 1289–1295 (1981). https://doi.org/10.1007/BF01711178

Download citation

Key words

  • Hemodynamics
  • Pulmonary circulation
  • Regional blood flow
  • Heart function
  • Artificial ventilation

Schlüsselwörter

  • Hämodynamik
  • Lungenkreislauf
  • Organdurchblutung
  • Herzfunktion
  • Künstliche Beatmung