Intensive Care Medicine

, Volume 17, Issue 1, pp 25–29 | Cite as

Endocrine abnormalities in severe traumatic brain injury —a cue to prognosis in severe craniocerebral trauma?

  • J. M. Hackl
  • M. Gottardis
  • Ch. Wieser
  • E. Rumpl
  • Ch. Stadler
  • S. Schwarz
  • R. Monkayo
Originals

Abstract

Patients with severe craniocerebral trauma (sCCT) display metabolic and endocrine changes. The question is raised whether hormonal patterns give cues to the prognosis of outcome or not. In 21 patients the function of the adrenocortical, gonadal, thyroid and human growth hormone (hGH)-insulin system was assessed. LH, FSH, TSH, prolactin and hGH were stimulated. 3 groups of patients were formed. Group I: patients in acute phase with a Glasgow Coma Score (GCS) more than 6 (group Ia) and less than 6 (group Ib). Group II: patients in transition to traumatic apallic syndrome (TAS). Group III: patients with full-blown or resolving TAS. The values of group Ia comprised low T3, T4 and testosterone, elevated insulin, normal hGH. Group Ib had hypothyroid T3 and T4 and an attenuated response of LH, TSH, prolactin and hGH to stimulation. Group III: there was seen an endocrine normalisation with elevated T4 and TBG and an altered response of hGH and prolactin to stimulation. Endocrine abnormalities were not helpful in predicting which course, either to better or to worse, a given patient would follow.

Key words

Severe craniocerebral trauma Adrenal system Gonadal system Thyroidal system Human growth hormone Insulin system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerstenbrand F (1967) Die Klinik des traumatischen apallischen Syndroms. In: Gerstenbrand F (ed) Das traumatische apallische Syndrom. Springer, Wien Berlin Heidelberg New York, pp 9–158Google Scholar
  2. 2.
    Gnehm HE, Bernasconi S, Zachmann M (1979) Posttraumatic anterior pituitary insufficiency in childhood. Helv Pediatr Acta 34:529–535Google Scholar
  3. 3.
    Hackl JM, Benzer A, Putz G, Mitterschiffthaler G, Prugger M, Rumpl E (1986) Inwieweit gelingt eine Reintegration bei Patienten nach einem schweren Schädel-Hirn-Trauma? Anästhesist 35:171–176Google Scholar
  4. 4.
    Jambart S, Turpin G, deGennes JL (1980) Panhypopituitarism secondary to head trauma: evidence for a hypothalamic origin of the deficit. Acta Endocrinol 93:264–270Google Scholar
  5. 5.
    Jennet B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet I:480–484Google Scholar
  6. 6.
    Langfitt TW, Gennarelli TA (1982) Can the outcome from head injury be improved. J Neurosurg 56:19–25Google Scholar
  7. 7.
    Rudman D, Fleischer AS, Kutner MH, Raggio JF (1977) Suprahypophyseal hypogonadism and hypothyreoidism during prolonged coma after head trauma. J Clin Endocrinol Metab 45:747–754Google Scholar
  8. 8.
    Hörtnagl H, Hammerle AF, Hackl JM, Brücke Th, Rumpl E (1980) The activity of the sympathetic nervous system during the course of severe head injury. Intensive Care Med 6:169–177Google Scholar
  9. 9.
    Barton RN, Stoner HB, Watson SM (1987) Relationship among plasma cortisol, adrenocorticotropine and the severity of injury in recently injured patients. J Trauma 27:384–392Google Scholar
  10. 10.
    Coates CL, Burwell RG, Carlin SA, Milligan CF (1981) The somatomedin activity in plasma from patients with multiple mechanical injuries: with observations on plasma cortisol. Injury 13:100–107Google Scholar
  11. 11.
    Eversmann I, Gottesmann M, von Werder K, Svika PC (1978) Stress and pituitary hormone secretion. Asiat Space Environ Med 49:234–237Google Scholar
  12. 12.
    Gobiet W, Werner U, Hackenberg K (1976) Verlaufsuntersuchungen der Hormone des Hypophysenvorderlappens, der Nebenniere sowie der biogenen Amine nach Schädel-Hirn-Trauma. In: Schmitt K et al (eds) Neurogener Schock. Schattauer, Stuttgart New York, pp 91–98Google Scholar
  13. 13.
    Gottardis M, Hackl JM (1988) Die Beeinflussung des katabolen Stoffwechsels bei septischen Patienten und Schädelhirn-traumatisierten durch Gabe von humanen Wachstumshormon. Infusionstherapie 15:112–117Google Scholar
  14. 14.
    Hartig W, Matkowitz R, Faust H (1986) Postaggression metabolism: hormonal and metabolic aspects. J Clin Nutr Gastroenterol 1:255–260Google Scholar
  15. 15.
    Hesch RD (1982) Schilddrüsenerkrankungen und thyroxinbindendes Globulin beim Schwerkranken. Acta Endokrinol Stoffw 3:24–28Google Scholar
  16. 16.
    Hume D (1974) Endocrine and metabolic responses to injury. In: Schartz S (ed) Principles of surgery. McGraw-Hill, New York, pp 1–63Google Scholar
  17. 17.
    Josten KU, Stoeckel H, Lauwen P, Mosebach KO, Schulte am Esch J, Rommelstein K (1980) Das Verhalten der hGH-Sekretion bei Schwerverletzten. Anästh Intensivther Notfallmed 15:213–223Google Scholar
  18. 18.
    Kaptein EM, Grieb DA, Spencer CA, Wheeler WS, Nicoloff JT (1981) Thyroxine metabolism in the lower thyroxine state of critical nonthyroidal illnesses. J Clin Endocrinol Metab 53:764–771Google Scholar
  19. 19.
    Kirkpatrick JR (1987) The neuroendocrine response to injury and infection. Nutrition 3:221–227Google Scholar
  20. 20.
    Kirvela O, Takala J, Irjala J, Pykäranta M (1985) Metabolic response to experimental trauma: the time relation to posttraumatic metabolism. Clin Nutr 4:39–42Google Scholar
  21. 21.
    Rumpl E, Hackl JM, Gerstenbrand F (1987) Spezielle Behandlungsprobleme bei komatösen und apallischen Patienten. In: Flügel KA (ed) Neurologische und psychiatrischeTherapie. Perimed, Erlangen, pp 563–573Google Scholar
  22. 22.
    Pentelenyi T, Kammerer L, Perter E, Fekete M, Koranyi L, Stützel M, Veress G, Bezzegh A (1979) Prognostic significance of the change in the carbohydrate metabolism in severe head injury. Acta Neurochir [Suppl] 28:103–107Google Scholar
  23. 23.
    Wehmann RE, Gregerman RI, Burns WH, Saral R, Santos GW (1985) Suppression of thyrotropin in the low-thyroxine state of severe nonthyroidal illness. N Engl J Med 312:546–552Google Scholar
  24. 24.
    Daniel PM, Prichard MML, Treip CS (1959) Traumatic infarction of anterior lobe of pituitary gland. Lancet II:927–931Google Scholar
  25. 25.
    Hoeffler JP, Frawley LS (1987) Hypothalamic factors differentially affect the proportions of the cells that secrete growth hormone or prolactin. Endocrinology 120:791–795Google Scholar
  26. 26.
    Bratusch-Marrein PR, Smith D, DeFronzo RA (1987) The effect of growth hormone on glucose metabolism and insulin secretion in man. J Clin Endocrinol Metab 55:971–981Google Scholar
  27. 27.
    Baes M, Denef C (1987) Evidence that stimulation of growth hormone release by epinephrine and vasoactive intestinal peptide is based on cel-to cell communication in the pituitary. Endocrinology 120:280–290Google Scholar
  28. 28.
    Fisher DA, Brown MR (1980) Somatostatin analog: plasma catecholamine suppression mediated by the central nervous system. Endocrinology 107:714–718Google Scholar
  29. 29.
    Hansen AP, Christensen SE, Lundbaek K (1975) The effect of somatostatin on the rise of growth hormone and glucagon secretion induced by arginine and L-Dopa in diabetic patients. Scand J Lab Invest 35:205–210Google Scholar
  30. 30.
    Martin JB (1980) Functions of central nervous system neurotransmitters in regulation of growth hormone secretion. Fed Proc 39:2902–2906Google Scholar
  31. 31.
    Shamoon H, Hendler R, Sherwin RS (1981) Synergistic interactions among antiinsulin hormones in the pathogenesis of stress hyperglycemia in humans. J Clin Endocrinol Metab 52:1235–1241Google Scholar
  32. 32.
    Siler TM, Yen SSC, Vale W, Guillemin R (1974) Inhibition by somatostatin on the release of TSH induced in man by thyrotropin releasing factor. J Clin Endocrinol Metab 38:742–745Google Scholar
  33. 33.
    Staub JJ, Conti A, Huber P, Martens M, Ackermann F, Müller-Brand J, Kofler Ch (1978) Sexhormonbindendes Globulin (SHBG), ein neuer metabolischer in-vitro Test der Schilddrüsenfunktion. Schweiz Med Wochenschr 108:1909–1911Google Scholar
  34. 34.
    Marek J, Schüllerová M, Schreiberová O, Limanová Z (1981) Effect of thyroid function on serum somatomedin activity. Acta Endocrinol 96:491–497Google Scholar
  35. 35.
    Phillips LS (1986) Nutrition, somatomedins and the brain. Metabolism 35:78–87Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. M. Hackl
    • 1
  • M. Gottardis
    • 1
  • Ch. Wieser
    • 1
  • E. Rumpl
    • 2
  • Ch. Stadler
    • 2
  • S. Schwarz
    • 3
  • R. Monkayo
    • 3
  1. 1.Department of Anaesthesia and General Intensive Care MedicineUniversity Hospital of InnsbruckInnsbruckAustria
  2. 2.Department of NeurologyGeneral Hospital of KlagenfurtAustria
  3. 3.Institute for Experimental PathologyUniversity Hospital of InnsbruckAustria

Personalised recommendations