Skip to main content
Log in

Topology of the moduli space for reachable linear dynamical systems: The complex case

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

This paper deals with the algebraic topology of the space Σ n,m of complex reachable linear dynamical systems. Topological invariants such as the singular homology groups of Σ n,m are explicitly computed and they are shown to coincide with those of a certain Grassmann manifold. From this some new results on the topology of rational transfer matrices with fixed McMillan degree are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aigner,Combinatorial Theory, Grundlehren der mathematischen Wissenschaften 234, Springer-Verlag, New York, 1979.

    Google Scholar 

  2. B. D. O. Anderson and R. M. Johnstone, Global adaptive pole positioning. Preprint 1983.

  3. K. Aström and T. Söderström, Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model,IEEE Trans. Autom. Control,AC-19 (1974), 769–773.

    Google Scholar 

  4. M. F. Atiyah, Instantons in two and four dimensions,Comm. Math. Phys.,93 (1984), 437–451.

    Google Scholar 

  5. M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory,Conn. Math. Phys.,61 (1978), 97–118.

    Google Scholar 

  6. G. Bredon,Introduction to Compact Transformation Groups, Vol. 46, Academic Press, New York, 1972.

    Google Scholar 

  7. R. W. Brockett, Some geometric questions in the theory of linear systems,IEEE Trans. Autom. Control,AC-21, (1976), 449–455.

    Google Scholar 

  8. R. W. Brockett, The geometry of the set of controllable linear systems,Research Reports of Autom. Control Lab., Fac. of Eng., Nagoya Univ.,24 (1977), 1–7.

    Google Scholar 

  9. R. W. Brockett and C. I. Byrnes, Multivariable Nyquist criteria, root loci, and pole-placement: A geometric viewpoint,IEEE Trans. Autom. Control,AC-26 (1981), 271–284.

    Google Scholar 

  10. C. I. Byrnes, The moduli space for linear dynamical systems, in1976 Ames Conference on Geometric Control Theory (R. Hermann and C. F. Martin, eds.), Math. Sci. Press, Brookline, MA, 1976, pp. 229–279.

    Google Scholar 

  11. C. I. Byrnes, Algebraic and geometric aspects of the analysis of feedback systems, inGeometrical Methods for the Theory of Linear Systems (C. I. Byrnes and C. F. Martin, eds.), Reidel, Dordrecht, 1980, pp. 85–124.

    Google Scholar 

  12. C. I. Byrnes, On compactifications of spaces of systems and dynamic compensation,Proc. 22nd IEEE Conference on Decision and Control, San Antonio, 1983, pp. 889–894.

  13. C. I. Byrnes and T. Duncan, On certain topological invariants arising in system theory, inNew Directions in Applied Mathematics (P. Hilton and G. Young, eds.), Springer-Verlag, New York, 1981, pp. 29–71.

    Google Scholar 

  14. C. I. Byrnes and P. L. Falb, Applications of algebraic geometry in system theory,Amer. J. Math.,101 (1979), 337–363.

    Google Scholar 

  15. C. I. Byrnes and N. E. Hurt, On the moduli of linear dynamical systems,Adv. in Math. Studies in Analysis,4 (1979), 83–122.

    Google Scholar 

  16. D. F. Delchamps, The geometry of spaces of linear systems with an application to the identification problem, Ph.D. Thesis, Harvard University, Cambridge, MA. 1982.

    Google Scholar 

  17. D. F. Delchamps, Geometric questions in systems identification, inSystems Information and Control, Vol. I: Geometry and Identification (P. E. Caines and R. Hermann, eds.), Math. Sci. Press, Brookline, MA, 1983, pp. 35–42.

    Google Scholar 

  18. D. F. Delchamps and C. I. Byrnes, Critical point behavior of objective functions defined on spaces of multivariable systems,Proc. 21st IEEE Conference on Decision and Control, Orlando, 1982, pp. 937–943.

  19. D. F. Delchamps, Global structure of families of multivariable linear systems with an application to identification,Math. Systems Theory,18 (1985), 329–380.

    Google Scholar 

  20. J. Dieudonné,Foundations of Modern Analysis, Vol. 3, Academic Press, New York, 1982.

    Google Scholar 

  21. S. K. Donaldson, Nahm's equations and the classification of monopoles,Comm. Math. Phys.,96 (1984), 387–408.

    Google Scholar 

  22. C. Ehresmann, Sur la topologie de certains espace homogenes,Ann. of Math.,35 (1934), 396–443.

    Google Scholar 

  23. C. G. Gibson and K. Wirthmüller,et al., Topological Stability of Smooth Mappings, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  24. M. Guest, Some relationships between homotopy theory and differential geometry, Ph.D. Thesis, Wolfson College, University of Oxford, Oxford, 1981.

    Google Scholar 

  25. V. Guillemin and A. Pollack,Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974.

    Google Scholar 

  26. M. Hazewinkel, Moduli and canonical forms for linear dynamical systems II: The topological case,Math. Systems Theory,10 (1977), 363–385.

    Google Scholar 

  27. M. Hazewinkel and R. Kalman, Moduli and canonical forms for linear dynamical systems, report 7504, Econometric Institute, Erasmus Univ., Rotterdam, 1974.

    Google Scholar 

  28. M. Hazewinkel and R. Kalman,On Invariants, Canonical Forms and Moduli for Linear, Constant, Finte-Dimensional, Dynamical Systems, Lecture Notes in Econ.-Math. System Theory, Vol. 131, Springer-Verlag, New York, 1976, pp. 48–60.

    Google Scholar 

  29. U. Helmke, The topology of the space of linear systems,Proc. 21st IEEE Conference on Decision and Control, Orlando, 1982, pp. 948–949.

  30. U. Helmke, The topology of a moduli space for linear dynamical systems,Comment. Math. Helv.,60 (1985), 630–655.

    Google Scholar 

  31. U. Helmke, Linear dynamical systems and instantons in Yang-Mills theory,IMA J. Math. Control and Inform. (1986) (to appear).

  32. U. Helmke and D. Hinrichsen, Canonical forms and orbit spaces of linear systems,IMA J. Math. Control and Inform. (1986) (to appear).

  33. R. Hermann and C. F. Martin, Applications of algebraic geometry to systems theory—Part I,IEEE Trans. Autom. Control,AC-22 (1977), 19–25.

    Google Scholar 

  34. D. Hinrichsen and D. Prätzel-Wolters, Generalized Hermite matrices and complete invariants of strict system equivalence,SIAM J. Control,21 (1983), 289–305.

    Google Scholar 

  35. M. W. Hirsch,Differential Topology, Graduate Texts in Mathematics 33, Springer-Verlag, New York, 1976.

    Google Scholar 

  36. R. Kalman, Mathematical description of linear dynamical systems,SIAM J. Control,1 (1963), 128–151.

    Google Scholar 

  37. R. Kalman, Algebraic-geometric description of the class of linear systems of constant dimension,Proc. 8th Annual Princeton Conf. on Information Sciences and Systems, 1974, pp. 189–191.

  38. F. C. Kirwan,Cohomology of quotionts in symplectic and algebraic geometry, Math. Notes 31, Princeton University Press, Princeton, NJ, 1984.

    Google Scholar 

  39. F. C. Kirwan, On spaces of maps from Riemann surfaces to Grasmannians and applications to the cohomology of moduli of vector bundles. Preprint, 1985.

  40. W. Massey,Homology and Cohomology Theory, Marcel Dekker, New York, 1978.

    Google Scholar 

  41. D. Q. Mayne, A canonical model for identification of multivariable systems,IEEE Trans. Autom. Control,AC-17 (1972), 728–729.

    Google Scholar 

  42. J. Milnor,Morse Theory, Annals of Mathematics Studies 51, Princeoton University Press, Princeton, NJ, 1973.

    Google Scholar 

  43. J. Milnor and J. Stasheff,Characteristic Classes, Annals of Mathematics Studies 76, Princeton University Press, Princeton, NJ, 1974.

    Google Scholar 

  44. V. M. Popov, Invariant description of linear time-invariant controllable systems,SIAM J. Control,10 (1972), 252–264.

    Google Scholar 

  45. G. Segal, The topology of spaces of rational functions,Acta Math.,143 (1979), 39–72.

    Google Scholar 

  46. E. H. Spanier,Algebraic Topology, McGraw-Hill, New York, 1966.

    Google Scholar 

  47. H. Whitney,Complex Analytic Varieties, Addison-Wesley, Reading, MA, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmke, U. Topology of the moduli space for reachable linear dynamical systems: The complex case. Math. Systems Theory 19, 155–187 (1986). https://doi.org/10.1007/BF01704912

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01704912

Keywords

Navigation