Skip to main content
Log in

Predicted stem-loop structures and variation in nucleotide sequence of 3′ noncoding regions among animal calicivirus genomes

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The “RNA Fold” computer program was used to analyze 3′-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3′-terminal sequences are 40–46 nucleotides in length and 72–91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of −2.1 to −18.2 kcal/mole. The RHDV genomic 3′-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3′-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3′-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of −35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3′ noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carter M.J., Milton I.D., Meanger J., Bennet M., Gaskel R.M., and Turner P.C., Virology190 443–448, 1992.

    Google Scholar 

  2. Meyers G., Wirblich C., and Theil H.J., Virology184 664–676, 1991.

    Google Scholar 

  3. Meyers G., Wirblich C., and Theil H.J., Virology184 677–686, 1991.

    Google Scholar 

  4. Bachrach H.L. and Hess W.R., Biophys Res Commun55 141–149, 1973.

    Google Scholar 

  5. Burroughs J.N. and Brown F., J Gen Virol41 443–446, 1978.

    Google Scholar 

  6. Schaffer F.L., Fraenkel-Conrat H., and Wagner R., (eds).Comparative Virology, 14. Plenum Press, New York, 1979, pp. 249–284.

    Google Scholar 

  7. Cubitt W.D. and Barret A.D., J Gen Virol66 1431–1438, 1985.

    Google Scholar 

  8. Schaffer F.L., Soergal M.E., Black J.W., Skilling D.E., Smith A.W., and Cubitt W.D., Arch Virol84 181–195, 1985.

    Google Scholar 

  9. Smith A.W., Mattson D.E., Skilling D.E., and McKeirnan A.J., Am J Vet Res44 851–855, 1983.

    Google Scholar 

  10. Neill J.D., Virus Res17 145–160, 1990.

    Google Scholar 

  11. Neill J.D., Reardon I.M., and Heinrikson R.L., J Virol65 5440–5447, 1991.

    Google Scholar 

  12. Neill J.D., Virus Res24 211–222, 1992.

    Google Scholar 

  13. Pinck M., Yot P., Chapeville F., and Duranton H.M., Nature226 954–956, 1970.

    Google Scholar 

  14. Yot P., Pinck M., Haenni A.L., Duranton H.M., and Chapeville F., Proc Natl Acad Sci USA67 1345–1352, 1970.

    Google Scholar 

  15. Mans R.M.W., Van Steeg M.H., Verlaan P.W.G., Pleij C.W.A., and Bosch L., J Mol Biol223 221–232, 1992.

    Google Scholar 

  16. Rietveld K., Linschooten K., Pleij C.W.A., and Bosch L., EMBO J3 2613–2619, 1984.

    Google Scholar 

  17. Rietveld K., Pleij C.W.A., and Bosch L., EMBO J2 1079–1085, 1983.

    Google Scholar 

  18. Dalgarno L., Rice C.M., and Strauss J.H., Virology129 170–187, 1983.

    Google Scholar 

  19. Faragher S.G. and Dalgarno L., J Mol Biol190 141–148, 1986.

    Google Scholar 

  20. Ou J-H., Strauss E.G., and Strauss J.H., Virology109 281–289, 1981.

    Google Scholar 

  21. Ou J-H., Trent D.W., and Strauss J.H., J Mol Biol156 19–730, 1982.

    Google Scholar 

  22. Brinton M.A., Fernandez A.V., and Dispoto J.H., Virology153 113–121, 1986.

    Google Scholar 

  23. Grange T., Boulouy M., and Girard M., FEBS Lett188 159–163, 1985.

    Google Scholar 

  24. Hahn C.S., Hahn Y.S., Rice C.M., Lee E., Dalgarno L., Strauss E.G., and Struass J.H., J Mol Biol198 33–41, 1987.

    Google Scholar 

  25. Mohan M. and Padmanabhan R., Gene108 185–191, 1991.

    Google Scholar 

  26. Takegami T., Washizu M., and Yasui K., Virology152 483–486, 1983.

    Google Scholar 

  27. Wengler G. and Castle E., J Gen Virol67 1183–1188, 1986.

    Google Scholar 

  28. Jacobson S.J., Konings D.A.M., and Sarnow P., J Virol67 2961–2971, 1993.

    Google Scholar 

  29. Martinez H.M., Nucleic Acids Res12 323–334, 1984.

    Google Scholar 

  30. Milton I.D., Vlasak R., Nowotny N., Rodak L., and Carter M.J., FEMS Microbiol Lett93 37–42, 1992.

    Google Scholar 

  31. Florentz C. and Gieǵe R., J Mol Biol191 117–130, 1986.

    Google Scholar 

  32. Weiner A.M. and Maizels N., Proc Natl Acad Sci USA84 7383–7387, 1987.

    Google Scholar 

  33. Tohya Y., Taniguchi Y., Takahashi E., Utagawa E., Takeda N., Miyamura K., Yamazaki S., and Mikami T., Arch Virol183 810–814, 1991.

    Google Scholar 

  34. Fastier L.B., Am J Vet Res18 382–389, 1957.

    Google Scholar 

  35. Prober J.M., Trainor G.L., Dan R.J., Hobbs F.W., Robertson C.W., Zaqursky R.J., Cocuzza A.J., Jensen M.A., and Burmeister K., Science238 336–341, 1987.

    Google Scholar 

  36. Sanger F., Nickles S., and Carlson A.R., Proc Natl Acad Sci USA74 5463–5467, 1977.

    Google Scholar 

  37. D'Alessio J.M. and Gerard G.F., Nucleic Acids Res16 1999–2014, 1988.

    Google Scholar 

  38. Seal B.S., Ridpath J.F., and Mengeling W.L., J Gen Virol74 2519–2524, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Disclaimer: No endorsements are herein implied. Brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standards of the products, and the use of the names by the USDA implies no approval of the products to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seal, B.S., Neill, J.D. & Ridpath, J.F. Predicted stem-loop structures and variation in nucleotide sequence of 3′ noncoding regions among animal calicivirus genomes. Virus Genes 8, 243–247 (1994). https://doi.org/10.1007/BF01704518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01704518

Key words

Navigation