Mathematical systems theory

, Volume 3, Issue 3, pp 246–287 | Cite as

Decomposition of linear sequential machines

  • Hervé Gallaire
  • Michael A. Harrison
Article

Abstract

Linear sequential machines can sometimes be decomposed into parallel and series connections of smaller linear sequential machines. Necessary and sufficient conditions are given for such decompositions to exist for finite linear sequential machines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Cohn, Controllability in linear sequential networks,IEEE Trans. Comput. EC-13 (1964) 52–53.Google Scholar
  2. [2]
    B. Elspas, The theory of autonomous linear sequential networks,IRE Trans. Circuit Theory,CT-6 (1959) 45–60.Google Scholar
  3. [3]
    H. Gallaire, J. N. Gray, M. A. Harrison andG. T. Herman, Infinite linear sequential machines,J. Comput. System Sci. 2 (1968), 381–419.Google Scholar
  4. [4]
    F. R. Gantmacher,The Theory of Matrices, Vols. I and II, Chelsea, New York, 1959.Google Scholar
  5. [5]
    A. Gill,Linear Sequential Circuits, McGraw-Hill, New York, 1966.Google Scholar
  6. [6]
    A. Ginzburg,Algebraic Theory of Automata, Academic Press, New York, 1968.Google Scholar
  7. [7]
    M. A. Harrison,Introduction to Switching and Automata Theory, McGraw-Hill, New York, 1965.Google Scholar
  8. [8]
    J. Hartmanis andR. E. Stearns,Algebraic Structure Theory of Sequential Machines, Prentice-Hall, Englewood Cliffs, N.J., 1966.Google Scholar
  9. [9]
    W. H. Kautz, (ed.),Linear Sequential Switching Circuits: Selected Technical Papers, Holden-Day, San Francisco, 1965.Google Scholar
  10. [10]
    K. B. Krohn andJ. L. Rhodes, Algebraic theory of machines I,Trans. Amer. Math. Soc. 116 (1965), 450–464.Google Scholar
  11. [11]
    B. L. van der Waerden,Modern Algebra, Vols. I and II, Ungar, New York, 1949.Google Scholar
  12. [12]
    S. Warner,Modern Algebra, Prentice-Hall, Englewood Cliffs, N.J., 1965.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1969

Authors and Affiliations

  • Hervé Gallaire
    • 1
  • Michael A. Harrison
    • 1
  1. 1.Department of Computer ScienceUniversity of California at BerkeleyUSA

Personalised recommendations