Skip to main content
Log in

Effects of antisense oligodeoxynucleotide hybridization on in vitro translation of potato virus Y RNA

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Potato virus Y (PVY), a potyvirus, has an RNA genome containing 9704 nucleotides of which 185 belong to the 5′ nontranslated region (NTR). Contrary to most eukaryotic mRNAs that have a cap structure, the potyvirus RNA has a genome-linked protein (VPg). In order to understand the mechanisms of PVY RNA translation initiation, hybrid-arrest translation was used to localize sequences involved in binding of proteins and/or ribosomes. The 5′ NTR was fused to the β-glucuronidase (GUS) reporter gene. Six antisense oligodeoxynucleotides were used for hybridization, and the efficiency of the in vitro translation of the hybridized mRNA was modified to different levels depending upon the position of the oligodeoxynucleotide used. The highest inhibition was obtained with an oligodeoxynucleotide hybridized to the 5′ end. In addition, translation of GUS mRNA containing the PVY 5′ NTR was greatly enhanced when this mRNA was capped. These results differ from those obtained with the tobacco etch virus (TEV) and three picornaviruses, but are similar to those obtained with capped mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hari V., Virology112 391–399, 1981.

    Google Scholar 

  2. Hari V., Siegel A., Rozek D., and Timberlake W.E., Virology92 568–571, 1979.

    Google Scholar 

  3. Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G., Astier-Manifacier S., and Casse-Delbart F., J Gen Virol70 935–947, 1990.

    Google Scholar 

  4. Hiebert E., Purciful D.E., and Christie R.G., Methods Virol8 267, 1984.

    Google Scholar 

  5. Domier L.L., Shaw J.G., and Rhoads R.E., Virology158 20–27, 1987.

    Google Scholar 

  6. Franssen H., Leunissen J., Goldbach R., Lomonosoff G., and Zimmern D., EMBO J3 855–861, 1984.

    Google Scholar 

  7. Trono D., Andino R., and Baltimore, D., J Virol62 2291–2299, 1988.

    Google Scholar 

  8. Pelletier J. and Sonenberg N., Nature (London)334 320–325, 1988.

    Google Scholar 

  9. Pelletier J. and Sonenberg N., J Virol63 441–444, 1989.

    Google Scholar 

  10. Pelletier J., Kaplan G., Racaniello V.R., and Sonenberg N., Mol Cell Biol8 1103–1112, 1988.

    Google Scholar 

  11. Shih D.S., Park I., Evans C.L., Jaynes J.M., and Palmenberg A.C., J Virol61 2033–2037, 1987.

    Google Scholar 

  12. Sankar S., Cheah K.C., and Porter A.G., Eur J Biochem184 39–45, 1989.

    Google Scholar 

  13. Elroy-Stein O., Fuerst T.R., and Moss B., Proc Natl Acad Sci USA86 6126–6130, 1989.

    Google Scholar 

  14. Carrington J.C. and Freed D.D., J. Virol64 1590–1597, 1990.

    Google Scholar 

  15. Kozak M., J Cel Biol108 229–241, 1989.

    Google Scholar 

  16. Furuichi Y., La Fiandra A., and Shatkin A.J., Nature (London)266 235–239, 1977.

    Google Scholar 

  17. Rhoads R.E., TIBS13 52–56, 1988.

    Google Scholar 

  18. Riechmann J.L., Lain S., and Garcia J.A., J Gen Virol70 2785–2789, 1989.

    Google Scholar 

  19. Gubler U. and Hoffman B.J., Gene10 247–263, 1983.

    Google Scholar 

  20. Maniatis T., Fritsch E.F., and Sambrook J.,Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, 1988.

    Google Scholar 

  21. Jefferson R.A., Plant Mol Biol Reporter5 387–405, 1987.

    Google Scholar 

  22. Laemmli U.K., Nature (London)227 680–685, 1970.

    Google Scholar 

  23. Lutcke H.A., Chow K.C., Mickel F.S., Moss K.A., Kern H.F., and Scheele G.A., EMBO J6 43–48, 1987.

    Google Scholar 

  24. Coleman J., Hirashima A., Inokuchi Y., Greene P., and Inouye M., Nature (London)315 601–603, 1985.

    Google Scholar 

  25. Haeuptle M.T., Frank R., and Dobberstein B., Nucleic Acids Res14 1427–1448, 1986.

    Google Scholar 

  26. Melton D.A., Antisense RNA and DNA. Cur Commun Mol Biol 37, 1988.

  27. Meerovitch K., Pelletier J., and Sonenberg N., Genes Develop3 1026–1034, 1989.

    Google Scholar 

  28. Del Angel R.M., Papavassiliou A.G., Fernandez-Tomas C., Silverstein S.J., and Racaniello V.R., Proc Natl Acad Sci USA86 8299–8303, 1989.

    Google Scholar 

  29. Jang S.K., Krâusslich H-G., Nickling M.H., Duke G.M., Palmenberg A.C., and Wimmer E., J Virol8 2636–2643, 1988.

    Google Scholar 

  30. Borovjagin A.V., Evstafieva A.G., Ugarova T.Y., and Shatsky I.N., FEBS Lett261 237–240, 1990.

    Google Scholar 

  31. Jang S.K. and Wimmer E., Genes Devel4 1560–1572, 1990.

    Google Scholar 

  32. Luz N., and Beck E., FEBS Lett269 311–314, 1990.

    Google Scholar 

  33. Melton D.A., Proc Natl Acad Sci USA82 144–148, 1985.

    Google Scholar 

  34. Kozak M., Mol Cell Biol9 5134–5142, 1989.

    Google Scholar 

  35. Gallie D.R., Sleat D.E., Watts J.W., Turner P.C., and Wilson T.M.A., Nucleic Acid Res16 883–893, 1988.

    Google Scholar 

  36. Green P.J., Pines O., and Inouye M., Ann Rev Biochem55 569–597, 1986.

    Google Scholar 

  37. Bertrand J.-R., Imbach J.-L., Paoletti C., and Malvy C., Biochem Biophys Res Commun164 311–318, 1989.

    Google Scholar 

  38. Pelletier J., Kaplan G., Racaniello V.R., and Sonenberg N., J Virol62 2219–2227, 1988.

    Google Scholar 

  39. Alsaadi S., Hassard S., and Stanway G., J Gen Virol70 2799–2804, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levis, C., Tronchet, M., Meyer, M. et al. Effects of antisense oligodeoxynucleotide hybridization on in vitro translation of potato virus Y RNA. Virus Genes 6, 33–46 (1992). https://doi.org/10.1007/BF01703755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703755

Key words

Navigation