Skip to main content
Log in

Rapid molecular characterization of mutations leading to unstable hemoglobin β-chain variants

  • Rapid Communication
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Summary

Characterization of unstable hemoglobins by protein analysis is often difficult. However, it is facilitated by DNA analysis, especially in the case of hyperunstable β-chain variants, which produce a β-thalassemia phenotype. We have applied an efficient strategy to the detection of such variants at the DNA level, based on computer-designed denaturing gradient gel electrophoresis (DGGE) of amplified DNA fragments. This approach makes it possible to detect any anomaly in the β-globin gene. We describe the use of the DGGE method for rapid characterization of β-chain variants and report a new missense mutation in the β-globin gene third exon, β 127 CAG-CGG/Gln-Arg, which is responsible for the synthesis of a highly unstable hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amselem S, Duquesnoy P, Attree O, Novelli G, Bousnina S, Postel-Vinay M-C, Goossens M (1989) Laron dwarfism and mutations of the growth hormone-receptor gene. N Engl J Med 321: 989–995

    Google Scholar 

  2. Attree O, Vidaud D, Vidaud M, Amselem S, Lavergne J, Goossens M (1989) Mutations in the catalytic domain of human coagulation factor IX: rapid characterization by direct genomic sequencing of DNA fragments displaying an altered melting behavior. Genomics 4: 266–272

    Google Scholar 

  3. Basset P, Beuzard Y, Garel MC, Rosa J (1978) Isoelectric focusing of human hemoglobins: its application to screening, to the characterization of 70 variants, and to the study of modified fractions of normal hemoglobins. Blood 51: 971–975

    Google Scholar 

  4. Baudin-Chich V, Wajcman H, Gombaud-Saintonge G, Arous N, Riou J, Brière J, Galactéros F (1988) Hemoglobin Brest [β 127 (H5) Gln→Lys], a new unstable human hemoglobin variant located at the α 1 β 1 interface with specific electrophoretic behavior. Hemoglobin 12: 179–188

    Google Scholar 

  5. Beris P, Miescher PA, Diaz-Chico JC, Han IS, Kutlar A, Hu H, Wilson JB, Huisman THJ (1988) Inclusion body β-thalassemia trait in a Swiss family is caused by an abnormal hemoglobin (Geneva) with an altered and extended β-chain carboxy-terminus due to a modification in codon β 114. Blood 72: 801–805

    Google Scholar 

  6. Carrell RM, Kay R (1972) A simple method for the detection of unstable hemoglobins. Br J Haematol 23: 615–619

    Google Scholar 

  7. Coleman MB, Steinberg MH, Adams JG III (1990) Hemoglobin Terre-Haute [β 106 (G8) arginine]: a posthumous correction to the original structure of Hb Indianapolis. Blood 76 [Suppl 1]: 57a

    Google Scholar 

  8. Cotton RGH, Campbell RD (1989) Chemical reactivity of matched cytosine and thymine bases near mismatched and unmatched bases in a heteroduplex between DNA strands with multiple differences. Nucleic Acids Res 17: 4223–4233

    Google Scholar 

  9. Fanen P, Ghanem N, Vidaud M, Besmond C, Martin J, Costes B, Plassa F, Goossens M (1992) Molecular characterization of cystic fibrosis: 16 novel mutations identified by analysis of the whole cystic fibrosis conductance transmembrane regulator (CFTR) coding regions and splice site junctions. Genomics 13: 770–776

    Google Scholar 

  10. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13

    Google Scholar 

  11. Fucharoen S, Kobayashi Y, Fucharoen G, Ohba Y, Miyazono K, Fukumaki Y, Takaku F (1990) A single nucleotide deletion in codon 123 of the β-globin gene causes an inclusion body β-thalassemia trait: a novel elongated globin chain β Makabe. Br J Haematol 75: 393–399

    Google Scholar 

  12. Ghanem N, Girodon E, Vidaud M, Martin J, Fanen P, Plassa F, Goossens M (1992) A comprehensive scanning method for rapid detection of β-globin gene mutations and polymorphisms. Hum Mutation (in press)

  13. Goossens M, Fanen P, Attree O, Vidaud M (1990) A new strategy for direct detection of β-thalassemia mutations. In Bank A (ed) Sixth Cooley's anemia symposium. Ann NY Acad Sci New York, pp 74–80

    Google Scholar 

  14. Grompe M, Muzny DM, Caskey CT (1989) Scanning detection of mutations in human ornithine transcarbamoylase by chemical mismatch cleavage. Proc Natl Acad Sci USA 86: 5888–5892

    Google Scholar 

  15. Gyllensten UB, Erlich HA (1988) Generation of single-strand DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85: 7652–7656

    Google Scholar 

  16. Hall GW, Franklin IM, Sura T, Thein SL (1991) A novel mutation (nonsense β 127) in exon 3 of the β-globin gene produces a variable thalassemic phenotype. Br J Haematol 79: 342–344

    Google Scholar 

  17. Honig GR, Green D, Shamsuddin M, Vida LN, Mason RG, Gnarra DJ, Maurer HS (1973) Hemoglobin Abraham Lincoln, β32 (B14) Leucine→Proline an unstable variant producing severe hemolytic disease. J Clin Invest 52: 1746–1755

    Google Scholar 

  18. Huisman THJ, Wilson JB, Kutlar A, Yang KG, Chen S-S, Webber BB, Atlay C, Martinez Villegas A (1986) Hb J-Antakya or α2β265 (E9) Lys→Met in a Turkish family and Hb Complutense or α2β2127 (H5) Gln→Glu in a Spanish family; correction of a previously published identification. Biochim Biophys Acta 871: 229–231

    Google Scholar 

  19. Jackson JM, Yates A, Huehns ER (1973) Haemoglobin Perth: β 32 (B14) Leu→Pro, an unstable haemoglobin causing haemolysis. Br J Haematol 25: 607–610

    Google Scholar 

  20. Kobayashi Y, Fukumaki Y, Komatsu N, Ohba Y, Miyaji T, Miura Y (1987) A novel globin structural mutant, Showa-Yakushiji (β 110 Leu-Pro) causing a β-thalassemia phenotype. Blood 70: 1688–1691

    Google Scholar 

  21. Montandon AJ, Green PM, Giannelli F, Bentley DR (1989) Direct detection of point mutations by mismatch analysis: application to haemophilia B. Nucleic Acids Res 17: 3347–3358

    Google Scholar 

  22. Myers RM, Maniatis T, Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. In: Wu R (ed) Methods in enzymology. Academic, New York, pp 501–527

    Google Scholar 

  23. Öner R, Öner C, Wilson JB, Tamagnini GP, Ribeiro LML, Huisman THJ (1991) Dominant β-thalassemia trait in a Portuguese family is caused by a deletion of (G) TGGCTGGTGT (G) and an insertion of (G) GGCAG (G) in codons 134, 135, 136 and 137 of the β-globin gene. Br J Haematol 79: 306–310

    Google Scholar 

  24. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86: 2766–2770

    Google Scholar 

  25. Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879

    Google Scholar 

  26. Orkin SH, Kazazian HHJ, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Waber PG, Giardina PJV (1982) Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in the human β-globin gene cluster. Nature 296: 627–631

    Google Scholar 

  27. Park SS, Barneton R, Kim SW, Weatherall DJ, Thein SL (1991) A spontaneous deletion of β33/34 Val in exon 2 of the β-globin gene (Hb Korea) produces the phenotype of dominant β-thalassemia. Br J Haematol 78: 581–582

    Google Scholar 

  28. Pirastu M, Ristaldi MS, Loudianos G, Murru S, Sciarratta GV, Parodi ML, Leone D, Agosti S, Cao A (1990) Molecular basis of atypical β-thalassemia heterozygotes. In: Bank A (ed) Sixth Cooley's anemia symposium. Ann NY Acad Sci New York, pp 90–97

    Google Scholar 

  29. Podda A, Galanello R, Maccioni L, Melis MA, Rosatelli C, Perseu L, Cao A (1991) Hemoglobin Cagliari (β 60 [E4] Val→Glu): a novel unstable thalassemic hemoglobinopathy. Blood 77: 371–375

    Google Scholar 

  30. Ristaldi MS, Pirastu M, Murru S, Casula L, Loudianos G, Cao A, Sciarratta GV, Agosti S, Parodi MI, Leone D, Melesendi C (1990) A spontaneous mutation produced a novel elongated β-globin chain structural variant (Hb Agnana) with a thalassemia-like phenotype. Blood 75: 1378–1380

    Google Scholar 

  31. Schneider RG, Barwick RC (1978) Measuring relative electrophoretic mobilities of mutant hemoglobins and globin chains. Hemoglobin 2: 417–422

    Google Scholar 

  32. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86: 232–236

    Google Scholar 

  33. Thein SL, Hesketh C, Taylor P, Temperley IJ, Hutchinson RM, Old JM, Wood WG, Clegg JB, Weatherall DJ (1990) Molecular basis for dominantly inherited inclusion body β-thalassemia. Proc Natl Acad Sci USA 87: 3924–3928

    Google Scholar 

  34. Thein SL, Best S, Sharpe J, Paul B, Clark DJ, Brown MJ (1991) Hemoglobin Chesterfield (β 28 Leu→Arg) produces the phenotype of inclusion body βthalassemia. Blood 77: 2791–2793

    Google Scholar 

  35. Vidaud M, Fanen P, Martin J, Ghanem N, Nicolas S, Goossens M (1990) Three point mutations in the CFTR gene in French cystic fibrosis patients: identification by denaturing gradient gel electrophoresis. Hum Genet 85: 446–449

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girodon, E., Ghanem, N., Vidaud, M. et al. Rapid molecular characterization of mutations leading to unstable hemoglobin β-chain variants. Ann Hematol 65, 188–192 (1992). https://doi.org/10.1007/BF01703113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703113

Key words

Navigation