Skip to main content
Log in

Simian virus 40 mutants with amino-acid substitutions near the amino terminus of large T antigen

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

A series of amino-acid substitution mutants has been made with changes in the region of simian virus 40 large tumor antigen (T antigen) that is shared with the small tumor antigen (t antigen). Both single and multiple amino-acid replacements were obtained using the heteroduplex deletion loop method and sodium bisulfite as the mutagen. The mutants could be divided into five phenotypic classes on the basis of their biological properties: a) mutants whose changes did not affect their ability to propagate on permissive monkey cells, nor to transform nonpermissive rodent cells; b) mutants that were not viable, replicated their DNA to 5% or less of wild type, but were positive for transformation; c) mutants that were not viable, replicated their DNA to 5% or less of wild type, and were defective for transformation; and d) mutants that completely lost all three activities coordinately. In addition, one mutant with changes in this region, 5002, replicated its DNA to about 50% of wild type, had an impaired transformation activity, and produced virions at a level of about 4% that of wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DePamphilis, M.L. and Bradley M.K., in Salzman N.P., (ed).,The Papovaviridae Plenum, New York, 1987, pp. 99–246.

    Google Scholar 

  2. Rigby P.W.J. and Lane D.P., Adv Viral Oncol3, 31–57, 1983.

    Google Scholar 

  3. Tooze J.,DNA Tumor Viruses: Molecular Biology of Tumor Viruses, 2nd ed., rev. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1981.

    Google Scholar 

  4. Clark, R., Lane, D., and Tjian R., J Biol Chem256, 11854–11858, 1981.

    Google Scholar 

  5. Giacherio, D. and Hager, L.P., J Biol Chem254, 8113–8116, 1979.

    Google Scholar 

  6. Tjian R. and Robbins A., Proc Natl Acad Sci USA76, 610–614, 1979.

    Google Scholar 

  7. Stahl H., Dröge P., and Knippers R., EMBO J5, 1939–1944, 1986.

    Google Scholar 

  8. Tjian R., Cell13, 165–179, 1978.

    Google Scholar 

  9. Shalloway D., Kleinberger T., and Livingstone D.M., Cell20, 411–422, 1980.

    Google Scholar 

  10. McKay R.D.G., J Mol Biol145, 471–488, 1981.

    Google Scholar 

  11. McKay R. and DiMaio D., Nature (London)289, 810–813, 1981.

    Google Scholar 

  12. Linzer D.I.H. and Levine A.J., Cell17, 43–52, 1979.

    Google Scholar 

  13. Lane D. and Crawford L.V., Nature (London)278, 261–263, 1979.

    Google Scholar 

  14. Smale S.T. and Tjian R., Mol Cell Biol6, 4077–4087, 1986.

    Google Scholar 

  15. Gannon, J.V. and Lane, D.P., Nature (London)329, 456–458, 1987.

    Google Scholar 

  16. DeCaprio, J.A., Ludlow J.W., Figge J., Shew J-Y, Huang C-M, Lee W-H, Marsilio E., Paucha E., and Livingston D.M., Cell54, 275–283, 1988.

    Google Scholar 

  17. Mitchell P.J., Wang C., and Tjian R., Cell50, 847–861, 1987.

    Google Scholar 

  18. Pipas J.M., Peden K.W.C., and Nathans D., Mol Cell Biol3, 203–213, 1983.

    Google Scholar 

  19. Gluzman, Y. and Ahrens, B., Virology123, 78–92, 1982.

    Google Scholar 

  20. Stringer J.R., J Virol42, 854–864, 1985.

    Google Scholar 

  21. Kalderon D. and Smith A.E., Virology139, 109–137, 1984.

    Google Scholar 

  22. Peden K.W.C. and Pipas J.M., J Virol55, 1–9, 1985.

    Google Scholar 

  23. Rutila J.E., Imperiale M.J., and Brockman W.W., J Virol58, 526–535, 1986.

    Google Scholar 

  24. Farber, J.M., Peden K.W.C., and Nathans, D., J Virol61, 436–445, 1987.

    Google Scholar 

  25. Cosman, D.J. and Trevethia M.J., Virology112, 605–624, 1981.

    Google Scholar 

  26. Peden K.W.C., Spence S.L., Tack L.C., Cartwright C.A., Srinivasan A., and Pipas J.M., J Virol64, 2912–2921, 1990.

    Google Scholar 

  27. Tornow J., Polvino-Bodnar M., Santangelo G., and Cole C.N., J Virol53, 415–424, 1985.

    Google Scholar 

  28. Pipas J.M., J Virol54, 569–575, 1985.

    Google Scholar 

  29. Peden K.W.C. and Nathans D., Proc Natl Acad Sci USA79, 7214–7217, 1982.

    Google Scholar 

  30. Maxam A.M. and Gilbert W., Methods Enzymol65, 499–560, 1980.

    Google Scholar 

  31. Sanger F., Nicklen S., and Couslon A.R., Proc Natl Acad Sci USA74, 5463–5467, 1977.

    Google Scholar 

  32. Chen, E.Y. and Seeburg P.H., DNA4, 165–170, 1985.

    Google Scholar 

  33. Sanger F. and Coulson A.R., FEBS Lett87, 107–110, 1978.

    Google Scholar 

  34. Brockman, W.W., Lee T.N.H., and Nathans D., Virology54, 384–397, 1983.

    Google Scholar 

  35. Brockman, W.W. and Nathans D., Proc Natl Acad Sci USA71, 942–946, 1974.

    Google Scholar 

  36. Lai C.-J. and Nathans D., Virology66, 70–81, 1975.

    Google Scholar 

  37. Peden K.W.C., Pipas J.M., Pearson-White S., and Nathans D., Science209, 1392–1396, 1980.

    Google Scholar 

  38. Peden K.W.C., Srinivasan A., Farber J.M., and Pipas J.M., Virology168, 13–21, 1989.

    Google Scholar 

  39. Pope J.H. and Rowe W.P., J Exp Med120, 121–128, 1964.

    Google Scholar 

  40. Landford R. and Butel J., Virology97, 295–307, 1979.

    Google Scholar 

  41. Harlow E., Crawford L.V., Pim D.C., and Williamson N., J Virol39, 861–869, 1981.

    Google Scholar 

  42. Lai C.-J. and Nathans D., J Mol Biol89, 70–81, 1974.

    Google Scholar 

  43. Todaro G.J. and Green H., Virology23, 117–119, 1964.

    Google Scholar 

  44. Logan J., Nicolas J.C., Topp W.C., Girard M., Shenk T., and Levine A.J., Virology115, 419–422, 1981.

    Google Scholar 

  45. Peden K.W.C., Charles C., Sanders L., and Tennekoon, G.I., Exp Cell Res185, 60–72, 1989.

    Google Scholar 

  46. Fiers, W., Contreras, R., Haegeman, G., Rogiers, R., Van der Voorde, A., Van Heuverswyn, H., Van Herreweghe, J., Volckaert, G., and Ysebart, M., Nature (London)273, 113–120, 1978.

    Google Scholar 

  47. Reddy V.B., Thimmappaya B., Dhar R., Subramanian K.N., Zain B.S., Pan J., Ghosh P.K., Celma M.L., and Weissman S.M., Science200, 494–502, 1978.

    Google Scholar 

  48. Seif, I., Khoury G., and Dhar R., Cell18, 963–977, 1979.

    Google Scholar 

  49. Yang R.C.A. and Wu R., Science206, 456–462, 1979.

    Google Scholar 

  50. Frisque, R.J., Bream, G.L., and Cannella, M.T., J Virol51, 458–469, 1984.

    Google Scholar 

  51. Pawlita M., Clad A., and zur Hausen H., Virology143, 196–211, 1985.

    Google Scholar 

  52. Delmas, V., Bastein C., Schernack S., and Feunteun J., EMBO J4, 1279–1286, 1985.

    Google Scholar 

  53. Pipas J.M., Chiang L.-C., and Barnes D.W., inCold Spring Harbor Conference on Cell Proliferation and Cancer: The Cancer Cell, Vol. 11, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1984, pp. 355–362.

    Google Scholar 

  54. Srinivasan A., Peden K.W.C., and Pipas J.M., J Virol63, 5459–5463, 1989.

    Google Scholar 

  55. Biggin, M.D., Gibson, T.J., and Hong G.F., Proc Natl Acad Sci USA80, 3963–3965, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peden, K.W.C., Pipas, J.M. Simian virus 40 mutants with amino-acid substitutions near the amino terminus of large T antigen. Virus Genes 6, 107–118 (1992). https://doi.org/10.1007/BF01703060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703060

Key words

Navigation