Skip to main content
Log in

Thalassemia: genotypes and phenotypes

  • Leading Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Summary

The large degree of phenotypic heterogeneity of thalassemia can now be related to the underlying genomic defects. This information has accumulated rapidly over the last years through the recent advances in molecular technology. The list of main types of thalassemia (α or β) that can be differentiated includes several gene deletions (complete or partial) and point mutations (or very short deletions). These occur within the genes or across the flanking DNA sequences and apparently interfere with the expression of these genes. From a quantitative point of view, the severity of the condition is directly related to the amount of functional globin chain mRNA which is made available to the ribosomes; this may vary from zero (gene deletions, frameshift, non-sense mutations or mutations at the splice-junction nucleotides) to very little (mostly hnRNA processing mutants) or to slightly subnormal (transcriptional mutants, mutations resulting in cryptic site activation or in defective cleavage of the poly-A tail). A few hyper-unstable globin chains also produce a thalassemic phenotype. This pattern is straightforward in the α-thalassemias. In the β-thalassemias, the decreased β-chain synthesis reflects the available mRNA, but the phenotypic expression depends also on the ability of the patient to reactivate γ-chain synthesis and complement the red cell content with hemoglobin F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams JG III, Boxer LA, Bahner RL, Forget BG, Tsistrakis GA, Steinberg MM (1979) Hemoglobin Indianapolis [B112 (G14)Arg]; an unstable β-chain variant producing the phenotype of severe β-thalassemia. J Clin Invest 63: 931–938

    PubMed  Google Scholar 

  2. Agraphiotis A, Fessas P, Loukopoulos D (1978) Haematological, biochemical and biosynthetic differences between β∘ and β+ thalassemia heterozygotes. 17th Congress Int Soc Haematol, Paris; Proceedings p 435

  3. Antonarakis S, Kazazian HH Jr, Orkin SH (1985) DNA polymorphism and molecular pathology of the human globin gene clusters. Hum Genet 69: 1–14

    PubMed  Google Scholar 

  4. Beris Ph, Miescher PA, Diaz-Chico JC, Han I-S, Kutlar A, Hu H, Wilson JB, Huisman THJ (1988) Inclusion-body β-thalassemia trait in a Swiss family is caused by an abnormal hemoglobin (Geneva) with an altered and extended β chain carboxyterminus due to a modification in codon β 114. Blood 72: 801–805

    PubMed  Google Scholar 

  5. Clegg JB, Weatherall DJ, Milner PF (1971) Haemoglobin Constant-Spring — a chain termination mutant? Nature 234: 337–340

    PubMed  Google Scholar 

  6. Fessas P (1963) Inclusions of hemoglobin in erythroblasts and erythrocytes of thalassemia. Blood 21: 21–32

    PubMed  Google Scholar 

  7. Fessas P (1968) The heterogeneity of thalassemia. Proc 11th Intl Cong ISH, Grune and Stratton, New York, pp 52–58

    Google Scholar 

  8. Fessas P, Loukopoulos D (1974) The β-thalassaemias. Clin Haematol 3: 411–435

    Google Scholar 

  9. Flatz G, Kinderlerer JL, Kilmartin JV, Lehmann H (1971) Haemoglobin Tak: a variant with additional residues at the end of the β-chains. Lancet 10: 732–733

    Google Scholar 

  10. Galanello R, Melis MA, Furbetta M, Scalas MT, Paglietti RE, Cao A (1981) Globin chain synthesis in obligatory β∘-thalassemia heterozygotes with isolated increase of Hb A2 levels. Nouv Rev Fr Hematol 23: 193–195

    PubMed  Google Scholar 

  11. Goossens M, Lee KY, Liebhaber SA, Kan YHW (1982) Globin structural mutant alpha 125 (Leu-Pro) is a novel cause of alpha-thalassaemia. Nature 296: 864–865

    PubMed  Google Scholar 

  12. Hattori Y, Yamane A, Yamashiro Y, Matsumo Y, Yamamoto Ki, Yamamoto Ku, Ohba Y, Miyaji T (1989) Characterization of β-thalassemia mutations in Japan. Hemoglobin 13: 657–670

    PubMed  Google Scholar 

  13. Higgs DR, Goodbourn SEY, Lamb J, Clegg JB, Weatherall DJ (1983) Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature 306: 398–400

    PubMed  Google Scholar 

  14. Higgs DR, Vickers MA, Wilkie AOM, Pretorius I-M, Jarman AP, Weatherall DJ (1989) A review of the molecular genetics of the human α-globin gene cluster. Blood 73: 1081–1104

    PubMed  Google Scholar 

  15. Kan YW, Nathan DG (1970) Mild thalassemia; the result of interaction of α and β thalassemia genes. J Clin Invest 49: 635–642

    PubMed  Google Scholar 

  16. Kan YW, Dozy ASM, Trecartin R, Todd D (1977) Identification of nondeletion defect in alpha-thalassemia. N Engl J Med 297: 1081–1084

    PubMed  Google Scholar 

  17. Kanavakis E, Metaxotou-Mavromati A, Kattamis C, Wainscoat JS (1983) The triplicated α gene locus and β-thalassaemia. Brit J Haematol 54: 201–207

    Google Scholar 

  18. Kanavakis E, Wainscoat JS, Wood WG, Weatherall DJ, Furbetta M, Galanello R, Georgiou D, Sophocleous T (1982) The interaction of α-thalassaemia with heterozygous β-thalassaemia. Brit J Haematol 52: 465–473

    Google Scholar 

  19. Kattamis C, Kanavakis E, Tzotzos S, Synodinos J, Metaxotou-Mavromati A (1988) Correlation of clinical phenotype to genotype in haemoglobin H disease. Lancet I: 442–444

    Google Scholar 

  20. Kazazian HH Jr, Boehm CD (1988) Molecular basis and prenatal diagnosis of β-thalassemia. Blood 72: 1107–1116

    PubMed  Google Scholar 

  21. Kutlar A, Lanclos KD (1987) Deletions causing δβ-thalassemia. Hemoglobin 11: 93–109

    PubMed  Google Scholar 

  22. Kutlar A, Lanclos KD (1987) Deletions causing γδβ-thalassemia. Hemoglobin 11: 191–198

    PubMed  Google Scholar 

  23. Kutlar A, Lanclos KD (1989) β-thalassemia repository. Hemoglobin 13: 775–787

    PubMed  Google Scholar 

  24. Labie D, Pagnier J, Lapoumeroulie C, Rouabi F, Duanda-Belkhodja O, Chardin P, Beldjord C, Wacjman H, Fabry ME, Nagel RL (1985) Common haplotype dependency of high Gγglobin gene expression and high Hb F levels in β-thalassemia and sickle cell anemia patients. Proc Nat Acad Sci-USA 82: 2111–2114

    PubMed  Google Scholar 

  25. Liebhaber SA (1989) α-thalassemia. Hemoglobin 13: 685–731

    PubMed  Google Scholar 

  26. Loukopoulos D, Loutradi A, Fessas P (1978) A unique thalassaemia syndrome: homozygous α-thalassaemia + homozygous β-thalassaemia. Brit J Haematol 39: 377–389

    Google Scholar 

  27. Millard DP, Mason K, Serjeant BE, Serjeant GR (1977) Comparison of haematological features of the β∘ and β+ thalassaemia traits in Jamaican Negroes. Brit J Haematol 36: 161–170

    Google Scholar 

  28. Nathan DG, Gunn RB (1966) Thalassemia: The consequences of unbalanced synthesis. Am J Med 41: 815–830

    PubMed  Google Scholar 

  29. Nathan DG, Stossel TB, Gunn RB, Zarkowski HS, Laforet MT (1969) Influence of hemoglobin precipitation on erythrocyte metabilism in α and β thalassemia. J Clin Invest 48: 33–41

    PubMed  Google Scholar 

  30. Nicholls RD, Fischel-Ghodzian N, Higgs DR (1987) Recombination at the human α-globin gene cluster: sequence features and topological constraints. Cell 49: 369–375

    PubMed  Google Scholar 

  31. Nienhuis AW, Anagnou NP, Ley TJ (1984) Advances in thalassemia: a review. Blood 63: 738–758

    PubMed  Google Scholar 

  32. Nienhuis AW, Maniatis T (1987) Structure and expression of globin genes in erythroid cells. In: Stamatoyannopoulos G, Nienhuis AW, Leder P, Majerus PW (eds) The molecular basis of blood diseases. WB Saunders, Philadelphia, pp 28–65

    Google Scholar 

  33. Orkin SH, Old JM, Weatherall DG, Nathan DJ (1979) Partial deletion of β-globin gene DNA in certain patients with beta thalassemia. Proc Nat Acad Sci USA 76: 2400–2404

    PubMed  Google Scholar 

  34. Orkin SH (1987) Disorders of hemoglobin synthesis: The thalassemias. In: Stamatoyannopoulos G, Nienhuis AW, Leder P, Majerus PW (eds) The molecular basis of blood diseases. WB Saunders, Philadelphia, pp 106–126

    Google Scholar 

  35. Orkin SH, Kazazian HH Jr, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Waber PG, Giardina PJV (1982) Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in the human beta-globin gene cluster. Nature 296: 627–631

    PubMed  Google Scholar 

  36. Orkin SH, Antonarakis SE, Loukopoulos D (1984) Abnormal processing of beta Knossos RNA. Blood 64: 311–313

    PubMed  Google Scholar 

  37. Orkin SH, Cheng TC, Antonarakis SE, Kazazian HH Jr (1985) Thalassemia due to a mutation in the cleavage polyadenylation signal of the human beta-globin gene. EMBO J 4: 453–456

    PubMed  Google Scholar 

  38. Ottolenghi S, Lanyon WG, Paul J, Williamson R, Weatherall DJ, Clegg JB, Pritchard J, Pootrakul S (1974) The severe form of alpha-thalassaemia is caused by a haemoglobin gene deletion. Nature 251: 389–391

    PubMed  Google Scholar 

  39. Rachmilewitz EA, Lubin BH, Shohet SB (1976) Lipid membrane peroxidation in β-thalassemia major. Blood 47: 495–505

    PubMed  Google Scholar 

  40. Schwartz E (1970) Heterozygous β-thalassemia: balanced globin synthesis in bone marrow cells. Science 167: 1513–1517

    Google Scholar 

  41. Schokker RC, Went LN, Bok J (1966) A new genetic variant of beta-thalassaemia. Nature 209: 44–45

    PubMed  Google Scholar 

  42. Semenza G, Delgrosso K, Roncz M, Malladi P, Schwartz E, Surrey S (1984) The silent carrier allele: Beta-thalassemia without a mutation in the beta-globin gene or its immediate flanking regions. Cell 39: 123–128

    PubMed  Google Scholar 

  43. Shalev O, Mogliner S, Shinar E, Rachmilewitz EA, Schrier S (1984) Impaired erythrocyte calcium homeostasis in β-thalassemia. Blood 64: 564–566

    PubMed  Google Scholar 

  44. Spritz RA, Jagadeeswaran P, Choudary PV, Biro PA, Elder JT, de Riel JV, Manley JL, Gefter ML, Forget BG, Weissman SM (1981) Base substitution in an intervening sequence of a β-thalassemic human globin gene. Proc Nat Acad Sci USA 78: 2455–2459

    PubMed  Google Scholar 

  45. Stamatoyannopoulos G, Nienhuis AW (1987) Hemoglobin switching. In: Stamatoyannopoulos G, Nienhuis AW, Leder P, Majerus PW (eds) The molecular basis of blood diseases. WB Saunders, Philadelphia, pp 66–105

    Google Scholar 

  46. Tamagnini JP, Lopes MC, Castanheira ME, Wainscoat JS, Wood WG (1983) Beta-thalassaemia, Portuguese type. Clinical, haematological and molecular studies of a newly defined form of beta-thalassemia. Br J Haematol 54: 189–200

    PubMed  Google Scholar 

  47. Thein SL, Al-Hakim I, Hoffbrand AV (1984) Thalassaemia Intermedia: a new molecular basis. Brit J Haematol 56: 333–337

    Google Scholar 

  48. Tuan D, Feingold E, Newman M, Weissman S, Forget BG (1983) Different 3′ end point of deletions causing δβ-thalassemia and hereditary persistence of fetal hemoglobin; implication for the control of γ gene expression in man. Proc N Acad Sci USA 80: 6937–6941

    Google Scholar 

  49. Weatherall DJ, Clegg JB (1981) The Thalassaemia syndromes. 3rd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  50. Weatherall DG, Pressley L, Wood WG, Higgs DR, Clegg JB (1981) Molecular basis for mild forms of homozygous β-thalassaemia. Lancet I: 527–529

    Google Scholar 

  51. Wainscoat JS, Thein SL, Wood WG, Weatherall DJ, Metaxotou-Mavrommati A, Tzotzos S, Kanavakis E, Kattamis C (1985) A novel deletion in the β-globin gene complex. Ann N Y Acad Sci 445: 20–31

    PubMed  Google Scholar 

  52. Wickramasinghe JN, Letsky E, Moffatt B (1973) Effect of α-chain precipitates on bone marrow function in homozygous β-thalassaemia. Brit J Haematol 25: 123–129

    Google Scholar 

  53. Winter WP (ed) Hemoglobin variants in human populations. CRC Press, Boca Raton

  54. Yataganas X, Fessas P (1968) The pattern of hemoglobin precipitation in thalassemia. Ann NY Acad Sci 165: 270–287

    Google Scholar 

  55. Yataganas X, Gahrton G, Fessas P, Kesse-Elias M, Thorell B (1973) Proliferative activity and glycogen accumulation in erythroblasts in β-thalassaemia. Br J Haematol 24: 651–659

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loukopoulos, D. Thalassemia: genotypes and phenotypes. Ann Hematol 62, 85–94 (1991). https://doi.org/10.1007/BF01702920

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01702920

Key words

Navigation