Skip to main content

Advertisement

Log in

A polycistronic transcript in transformed cells encodes the dihydrofolate reductase of herpesvirus saimiri

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Herpesvirus saimiri, an oncogenic gamma herpesvirus of primates, is the only eukaryotic virus that carries the entire metabolic gene set for a complex biochemical synthesis. Every element of the thymidine synthesis gene cascade is present in the virus, and their function is probably related to the uniquely high A + T content of the genome. Although one member of the gene set, dihydrofolate reductase (DHFR), is mapped in a region required for oncogenesis, very little is known of the expression and function of this gene in transformed cells. We report the expression of the DHFR sequence on a novel, unique tricistronic transcript in virally transformed tumor cells. The DHFR sequence is the first open reading frame on a 5.3 kb minor transcript. Alpha-amanitine sensitivity indicates that it is an RNA polymerase II transcript, and since it is also polyadenylated it appears to be a functional, relatively unstable (half-life 3 hr) mRNA. Initiation of transcription uniquely overlaps with the HSUR3 small RNA gene. Expression of the small transcript appears to be alpha-amanitine resistant, implicating polymerase III transcription. Together with the remarkably low-level expression of HSUR3 in tumor cells, the data may indicate transcription interference between two different RNA polymerases, with unusual overlapping regulation and initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht J-C., Nicholas J., Biller D., Kameron K.R., Biesinger B., Newman C., Wittmann S., Craxton M.A., Coleman H., Fleckenstein B., and Honess R.W., J Virol66 5047–5058, 1992.

    Google Scholar 

  2. Fleckenstein B., Bornkamm G.W., Mulder C., Werner F.-J., Daniel M.D., Falk L.A., and Delius H., J Virol25 361–373, 1978.

    Google Scholar 

  3. Baer R, Bankier A.T., Biggin M.D., Deininger P.L., Farrel P.J., Gibson T.J., Gatful G., Hudson G.S., Satchwell C., Tuffnell P.S., and Barrell B.G., Nature310 207–211, 1985.

    Google Scholar 

  4. Roizman B., Cell16 481–490, 1979.

    Google Scholar 

  5. Gustafsohn D.P., in Dunne H.W. (ed).Diseases of Swine. Iowa State University Press, Ames, IA, 1970, pp. 337–355.

    Google Scholar 

  6. Ebeling A., Keil G., Nowak B., Fleckenstein B., Berthelot N., and Sheldrick P., J Virol45 715–726, 1983.

    Google Scholar 

  7. Iltis J.P., Oakes J.E., Hyman R.W., and Rapp, F., Virology82 345–352, 1977.

    Google Scholar 

  8. Ayusawa D., Shimizu K., Hideki K., Keiichi T., and Seno T., J Biol Chem258 12448–12454, 1983.

    Google Scholar 

  9. Trimble J.J., Murthy S.C.S., Bakker A., Grassmann R., and Desrosiers R.C., Science239 1145–1147, 1988.

    Google Scholar 

  10. Purohit S., Bestwick R.K., Lasser G.W., Rogers C.M., and Mathews C.K., J Biol Chem256 9121, 1981.

    Google Scholar 

  11. Purohit S. and Matthews C.K., J Biol Chem259 6261, 1984.

    Google Scholar 

  12. Bodemer W., Niller H.H., Nitsche N., Scholz B., and Fleckenstein B., J Virol60 114–123, 1986.

    Google Scholar 

  13. Kamine J., Bakker A., and Desrosiers R.C., J Virol52 532–540, 1984.

    Google Scholar 

  14. Wade M., Kowalik T.F., Mudryj M., Huang E.-S., and Azizkhan J.C., Mol Cell Biol12 4364–4374, 1992.

    Google Scholar 

  15. Geck P., Whitaker S.A., Medveczky M.M., and Medveczky P.G., J Virol64 3509–3515, 1990.

    Google Scholar 

  16. Geck P., Whitaker S.A., Medveczky M.M., Last T.J., and Medveczky P.G., Virus Genes8 25–34, 1993.

    Google Scholar 

  17. Kamine J., Bakker A., and Desrosiers R.C., J Virol52 532–540, 1984.

    Google Scholar 

  18. Lee S.I., Murthy S.C.S., Trimble J.L., Desrosiers R.C., and Steitz J.A., Cell54 599–607, 1988.

    Google Scholar 

  19. Current Protocols in Molecular Biology. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Smith J.A., Seidman J.G., and Struhl K. (eds). John Wiley & Sons, Inc., 1994.

  20. Medveczky M.M., Szomolanyi E., Hesselton R., DeGrand D., Geck P., and Medveczky P.G., J Virol63 3601–3611, 1989.

    Google Scholar 

  21. Bogenhagen D.F. and Brown D.D. Cell24 261–270, 1981.

    Google Scholar 

  22. Sentenac A., CRC Critical Rev Biochem18 31–90, 1985.

    Google Scholar 

  23. Carlson D.P. and Ross J., Mol Cell Biol6 3278–3282, 1986.

    Google Scholar 

  24. Kedinger C., Gniazdowski M., Mandel J.L. Jr, Gissinger F., and Chambon P., Biochem Biophys Res Comm38 165–171, 1970.

    Google Scholar 

  25. Desrosiers R.C., Silva D.P., Waldron L.M., and Letvin N.L. J Virol57 701–705, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitaker, S., Geck, P., Medveczky, M.M. et al. A polycistronic transcript in transformed cells encodes the dihydrofolate reductase of herpesvirus saimiri. Virus Genes 10, 163–172 (1995). https://doi.org/10.1007/BF01702597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01702597

Key words

Navigation