Skip to main content

Detoxification of copper byNitzschia obtusa Wm. Sm., a pennate diatom

This is a preview of subscription content, access via your institution.

References

  1. Bariaud A, Bury M, Mestre JC (1985) Mechanism of Cd resistance inEuglena gracilis. Physiologia Pl 63:382–386

    Google Scholar 

  2. Davis BJ (1964) Disc electrophoresis II. Method and application to human serum protein. Ann NY Acad Sci 121:404–424

    Google Scholar 

  3. Davies AG (1976) An assessment of the basis of Hg tolerance inDunaliella teritolecta. J Mar Biol Assoc UK 56:39–57

    Google Scholar 

  4. Fogg GE (1966) The extracellular products of algae. Oceagnogr Mar Biol Annu Rev 4:195–212

    Google Scholar 

  5. Foster PL (1977) Cu exclusion as a mechanism of heavy metal tolerance in green alga. Nature (Lond) 269:322–323

    Google Scholar 

  6. Gingrich DJ, Weber DN, Shaw LF, Garvery JS, Petering DH (1986) Characterization of a highly negative and labile binding protein induced inEuglena gracilis by Cd. Environ Health Persepct 65:77–87

    Google Scholar 

  7. Jensen TE, Rachlin JW, Jani V, Warkentine B (1982) An X-ray energy dispersive study of cellular compartmentalization of Pb and Zn inChlorella saccharophila (Chlorophyta),Navicula incerta andNitzschia closterium (Bacillariophyta). Environ Expt Bot 22:319–328

    Google Scholar 

  8. Maclean FI, Lucin OJ, Shaihk ZA, Manz ER (1972) The uptake and subcellular distribution of Cd and Zn in microorganisms. Fed Proc 31:699

    Google Scholar 

  9. Murphy TP, Lean DRS, Nalewajko C (1976) blue-green algae, their excretion of iron selective chelators enable them to dominate other algae. Science NY 192:900–962

    Google Scholar 

  10. Rao VNR, Sivasubramanian V, Gowrinathan KP (1988) Cu binding protein fromCyclotella meneghiniana kütz. Indian J Microbiol 28:184–187

    Google Scholar 

  11. Reimann BEF, Lewin JC, Guillard RRL (1963)Cyclotella cryptica, a new brakish water diatom species. Phycologia 3:75–84

    Google Scholar 

  12. Shrift A (1959) Nitrogen and sulpher change associated with growth uncoupled from cell division inChlorella vulgaris. Plant physiol Lancaster 36:506–509

    Google Scholar 

  13. Sicko-Goad L, Stoermer EF (1979) A morphometric study of Pb and Cu effects onDiatoma tenue varelongata (Bacillariophyta). J Phycol 15:316–321

    Google Scholar 

  14. Silverberg BA, Stokes PM, Ferstenberg LB (1976) Intracellular complexes in a Cu tolerant green algae. J Cell Biol 69:210–214

    Google Scholar 

  15. Stokes PM, Maler T, Riordan JR (1977) A low molecular weight Cu binding protein in a Cu tolerant strain ofScenedesmus acuminatus. In: Hemphill DD (ed) Trace substances in environmental health XI, University of Missouri, Columbia, pp. 146–155

    Google Scholar 

  16. Stokes PM (1983) Responses of freshwater algae to metals. In: Round FE and Chapman DJ (eds) Progress in Phycological Research vol 2. Elsevier Science Publishers, Newyork 87–112

    Google Scholar 

  17. Wang WS, Tischer RG (1973) Study on the extracellular polysaccharides produced by a blue-green algaAnabaena flos-aquae A-37. Arch Microbiol 91:77–81

    Google Scholar 

  18. Weber K, Osborn M (1969) The reliability of molecular weight determination by dodecyl sulphate polyacrylamide gel electrophoresis. J Biol Chem 224:4406–4412

    Google Scholar 

  19. Wolk CP (1973) Physiology and cytological chemistry of blue-green algae. Bacteriol Rev 37:32–101

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. R. Rao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gowrinathan, K.P., Rao, V.N.R. Detoxification of copper byNitzschia obtusa Wm. Sm., a pennate diatom. Bull. Environ. Contam. Toxicol. 45, 612–618 (1990). https://doi.org/10.1007/BF01700636

Download citation

Keywords

  • Copper
  • Waste Water
  • Water Management
  • Water Pollution