Skip to main content

Pulmonary biochemical assessment of fenitrothion toxicity in rats

This is a preview of subscription content, access via your institution.

References

  1. Alpert SM, Schwartz BB, Lee SD, Lewis TR (1971) Alveolar protein accumulation: A sensitive indicator of low level oxidant toxicity. Arch Intern Med 128: 69–73

    Google Scholar 

  2. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234: 466–468

    Google Scholar 

  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Biophys 37: 911–917

    Google Scholar 

  4. Brain JD (1970) Free cells in the lung. Arch Intern Med 126: 477–487

    Google Scholar 

  5. Chevalier G, Bastie-Sigeac I, Cote MG (1982) Morphological assessment of fenitrothion pulmonary toxicity in the rat. Toxicol Appl Pharmacol 63: 91–104

    Google Scholar 

  6. Downs F, Pigman W (1976) Qualitative and quantitative determination of sialic acids. In: Methods in carbohydrate chemistry, ed. RH Whistler, JN BeMiller, 7: 233–240, Academic Press, New York

    Google Scholar 

  7. Fridovich I, Freeman B (1986) Antioxidant defenses in the lung. Ann Rev Physiol 48: 693–702

    Google Scholar 

  8. George G, Hook GER (1984) The pulmonary extracellular lining. Environ Hlth Perspect 55: 227–237

    Google Scholar 

  9. Henderson RF, Damon EG, Henderson TR (1978a) Early damage indicators in the lung. I. Lactate dehydrogenase activity in the airways. Toxicol Appl Pharmacol 44: 291–297

    Google Scholar 

  10. Henderson RF, (1984) Use of bronchoalveolar lavage to detect lung damage. Environ Hlth Perspect 56: 115–129

    Google Scholar 

  11. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  12. McTaggart-Cowan PD (1977) Fenitrothion: The Long Term Effects of Its Use in Forest Ecosystems, NRCC/CNRC, Publication No. 15389, Ottawa

  13. Mustafa MG, DeLucia AJ, York GK, Arth C, Cross CE (1973) Ozone interaction with rodent lung. II. Effects on oxygen consumption of mitochondria. J. Lab Clin Med 82: 357–365

    Google Scholar 

  14. Mustafa MG (1974) Augmentation of mitochondrial oxidative metabolism in lung tissue during recovery of animals from acute ozone exposure. Arch Biochem Biophys 165: 531–538

    Google Scholar 

  15. Plaa, GL, Witschi H (1976) Chemicals, drugs and lipid peroxidation. Ann Rev Pharmacol Toxicol 16: 125–141

    Google Scholar 

  16. Reid LM (1977) Secretory cells. Fed Proc 36: 2703–2707

    Google Scholar 

  17. Skoza L, Snyder A, Kikkawa Y (1983) Ascorbic acid in bronchoalveolar wash. Lung 161: 99–109

    Google Scholar 

  18. Willbur KM, Bernheim F, Shapiro OW (1949) The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Arch Biochem Biophys 24: 305–313

    Google Scholar 

  19. Wills ED (1966) Mechanism of lipid peroxide formation in animal tissues. Biochem J 99: 667–676

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Firoze Khan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khan, M.F., Abidi, P., Anwer, J. et al. Pulmonary biochemical assessment of fenitrothion toxicity in rats. Bull. Environ. Contam. Toxicol. 45, 598–603 (1990). https://doi.org/10.1007/BF01700634

Download citation

Keywords

  • Toxicity
  • Waste Water
  • Water Management
  • Water Pollution
  • Fenitrothion