Skip to main content
Log in

Models of the cores of dislocations in metals and disclinations in liquid crystals

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The development of dislocation core models in metals with non-close-packed crystalline structure is reviewed. The paper starts with the Peierls-Nabarro model generalized to the case of non-planar cores to describe dislocation splitting in bcc metals. Atomistic studies of dislocations cores in bcc metals and intermetallic compounds with L12 and B2 structures are then discussed and the principal features of non-planar cores emphasized. Finally, an analogy between dislocations in solid and disclination in liquid crystals is presented and similarities and differences in the treatment of core structures of these defects in solid and liquid crystals discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedel J.: Dislocations. Pergamon Press, Oxford, 1964.

    Google Scholar 

  2. Nabarro F.R.N.: Theory of Crystal Dislocations. Clarendon Press, Oxford, 1967.

    Google Scholar 

  3. Hirth J.P. and Lothe J.: Theory of Dislocations. Wiley-Interscience, New York, 1982.

    Google Scholar 

  4. Kroupa F.: J. Phys. (France)27 (1966) C3.

    Google Scholar 

  5. Hirsch P.B.:in 5th Int. Conf. Crystallography. Cambridge University, 1960, p. 139.

  6. Kroupa F.: Phys. Status Solidi A3 (1963) K391.

    Google Scholar 

  7. Kroupa F. and Vitek V.: Canad. J. Phys.45 (1967) 945.

    Google Scholar 

  8. Sutton A.P. and Balluffi R.W.: Interfaces in Crystalline Materials. Oxford University Press, 1995.

  9. Frenkel J. and Kontorova T.: Phys. Z. Sowj. Un.13 (1938) 1.

    Google Scholar 

  10. Peierls R.: Proc. Phys. Soc. London B52 (1940) 34.

    Google Scholar 

  11. Nabarro F.R.N.: Proc. Phys. Soc. London B59 (1947) 256.

    Google Scholar 

  12. Vitek V.: Philos. Mag. A18 (1968) 773.

    Google Scholar 

  13. Schoeck G.: Philos. Mag. A69 (1994) 1085.

    Google Scholar 

  14. Kroupa F. and Lejček L.: Czech. J. Phys. B22 (1972) 813.

    Google Scholar 

  15. Lejček L.: Czech. J. Phys. B22 (1972) 802.

    Google Scholar 

  16. Vitek V., Lejček L., and Bowen D.K.:in Interatomic Potentials and Simulation of Lattice Defects (Eds. Gehlen P.C., Beeler J.R., Jaffee R.I.). Plenum Press, New York, 1972, p. 493.

    Google Scholar 

  17. Rice J.R.: J. Mech. Phys. Solids40 (1992) 239.

    Google Scholar 

  18. Rice J.R. and Beltz G.E.: J. Mech. Phys. Solids42 (1994) 333.

    Google Scholar 

  19. Christian J.W. and Vitek V.: Rep. Prog. Phys.33 (1970) 307.

    Google Scholar 

  20. Vitek V.:in Dislocations and Properties of Real Materials (Ed. Lorretto M.). The Institute of Metals, London, 1985, p. 30.

    Google Scholar 

  21. Vitek V.: Prog. Mater. Sci.36 (1992) 1.

    Google Scholar 

  22. Duesbery M.S.:in Dislocations in Solids 8 (Ed. Nabarro F.R.N.). North Holland, Amsterdam, 1989, p. 67.

    Google Scholar 

  23. Duesbery M.S. and Richardson G.Y.: Critical Reviews in Solid State and Materials Science17 (1991) 1.

    Google Scholar 

  24. Blekherman M.K. and Indenbom V.L.: Fiz. Tverd. Tela16 (1974) 2678.

    Google Scholar 

  25. Ben-Abraham S.I.: Israel J. Technol.10 (1972) 429.

    Google Scholar 

  26. Kroupa F. and Lejček L.: Phys. Status Solidi A29 (1975) K39.

    Google Scholar 

  27. Kroupa F. and Lejček L.: Czech. J. Phys. B26 (1976) 528.

    Google Scholar 

  28. Kroupa F.: Archives of Mechanics28 (1979) 443.

    Google Scholar 

  29. Lejček L.: Czech. J. Phys. B29 (1979) 196.

    Google Scholar 

  30. Lejček L. and Kroupa F.: Czech. J. Phys. B31 (1981) 719.

    Google Scholar 

  31. Zhang H.T., Mann E., and Seeger A.: Phys. Status Solidi B153 (1989) 465.

    Google Scholar 

  32. Whitworth R.W.: Adv. Phys.24 (1975) 203.

    Google Scholar 

  33. Vitek V., Khantha M., Cserti J., and Sodani Y.:in Int. Symp. on Intermetallic Compounds (Ed. Izumi O.). The Japan Institute of Metals, Sendai, 1991, p. 3.

    Google Scholar 

  34. Vitek V., Cserti J., and Duesbery M.S.:in Professor Sir Peter Hirsch Festschrift (Ed. Humpreys C.J.), to be published.

  35. Kaxiras E. and Duesbery M.S.: Phys. Rev. Lett.70 (1993) 3752.

    Google Scholar 

  36. Joos B., Ren Q., and Duesbery M.S.: Phys. Rev. B50 (1994) 5890.

    Google Scholar 

  37. Kubin L.P.: Reviews on Deformation Behaviour of Materials4 (1982) 181.

    Google Scholar 

  38. Christian J.W.: Metall. Trans. A14 (1983) 1237.

    Google Scholar 

  39. Dipersio J. and Escaig B.: Phys. Status Solidi A40 (1977) 393.

    Google Scholar 

  40. Sakai A., Nishioka Y., and Suzuki H.: J. Phys. Soc. Japan46 (1979) 881.

    Google Scholar 

  41. Vitek V., Perrin R.C., and Bowen D.K.: Philos. Mag. A21 (1970) 1049.

    Google Scholar 

  42. Basinski Z.S., Duesbery M.S., and Taylor R.: Can. J. Phys.49 (1971) 2160.

    Google Scholar 

  43. Minami F., Kuramoto E., and Takeuchi S.: Phys. Status Solidi A12 (1972) 581.

    Google Scholar 

  44. Minami F., Kuramoto E., and Takeuchi S.: Phys. Status Solidi A22 (1974) 81.

    Google Scholar 

  45. Vitek V.: Crystal Lattice Defects5 (1975) 1.

    Google Scholar 

  46. Duesbery M.S., Vitek V., and Bowen D.K.: Proc. Roy. Soc. London A332 (1973) 85.

    Google Scholar 

  47. Vitek V.: Proc. Roy. Soc. London A352 (1976) 109.

    Google Scholar 

  48. Duesbery M.S. and Basinski Z.S.: Acta Metall. Mater.41 (1993) 643.

    Google Scholar 

  49. Finnis M.W. and Sinclair J.E.: Philos. Mag. A50 (1984) 45.

    Google Scholar 

  50. Ackland G.J. and Thetford R.: Philos. Mag. A56 (1987) 15.

    Google Scholar 

  51. Rabier J. and Grilhe J.: J. Phys. Chem. Solids34 (1973) 1031.

    Google Scholar 

  52. Takeuchi S. and Kuramoto E.: J. Phys. Soc. Japan38 (1975) 480.

    Google Scholar 

  53. Takeuchi S.: Philos. Mag. A39 (1979) 661.

    Google Scholar 

  54. Van Heugten W.F.W.M., Caspers L.M., and De Bosson J.T.M.: Phys. Status Solidi B92 (1979) 199.

    Google Scholar 

  55. Masuda K., Kobayashi K., Sato A., and Mori T.: Philos. Mag. B43 (1981) 19.

    Google Scholar 

  56. Sato A. and Masuda K.: Philos. Mag. B43 (1981) 1.

    Google Scholar 

  57. Vitek V., Pope D.P., and Bassani J.S.:in Dislocations in Solids (Ed. Nabarro F.R.N.). North Holland, Amsterdam, 1995, to be published.

    Google Scholar 

  58. Bowen D.K., Christian J.W., and Taylor G.: Can. J. Phys.45 (1967) 903.

    Google Scholar 

  59. Vesely D.: Phys. Status Solidi A29 (1968) 675.

    Google Scholar 

  60. Duesbery M.S. and Foxdal R.A.: Phys. Rev. B43 (1969) 5143.

    Google Scholar 

  61. Yoo M.H., Sass S.L., Fu C.L., Mills M.J., Dimiduk D.M., and George E.P.: Acta Metall. Mater.41 (1993) 987.

    Google Scholar 

  62. Pope D.P. and Ezz S.S.: International Metals Reviews25 (1984) 233.

    Google Scholar 

  63. Dimiduk D.M.: J. Phys. (France) III1 (1991) 1025.

    Google Scholar 

  64. Yamaguchi M., Paidar V., Pope D.P., and Vitek V.: Philos. Mag. A45 (1982) 867.

    Google Scholar 

  65. Paidar V., Yamaguchi M., Pope D.P., and Vitek V.: Philos. Mag. A45 (1982) 883.

    Google Scholar 

  66. Vitek V., Ackland G.J., and Cserti J.: in Alloy Phase Stability and Design (Eds. Stocks G.M., Pope D.P., Giamei A.G.). Proc. Mater. Res. Soc. Symp.186, MRS, Pittsburgh, 1991, p. 237.

    Google Scholar 

  67. Vitek V., Sodani Y., and Cserti J.:in High-Temperature Ordered Intermetallic Alloys IV (Eds. Johnson L.A., Pope D.P., Stiegler J.O.). Proc. Mater. Res. Soc. Symp.213, MRS, Pittsburgh, 1991, p. 195.

    Google Scholar 

  68. Daw M.S. and Baskes M.I.: Phys. Rev. B29 (1984) 6443.

    Google Scholar 

  69. Yoo M.H., Daw M.S., and Baskes M.I.:in Atomistic Simulations of Materials: Beyond Pair Potentials (Eds. Vitek V., Srolovitz D.). Plenum Press, New York, 1989, p. 401.

    Google Scholar 

  70. Pasianot R., Farkas D., and Savino E.J.: Scripta Metall. Mater.24 (1990) 1669.

    Google Scholar 

  71. Pasianot R., Farkas D., and Savino E.J.: J. Phys. (France) III1 (1991) 997.

    Google Scholar 

  72. Parthasarathy T.A., Dimiduk D.M., Woodward C., and Diller D.:in High-Temperature Ordered Intermetallic Alloys IV (Eds. Johnson L.A., Pope D.P., Stiegler J.O.). Proc. Mater. Res. Soc. Symp.213, MRS, Pittsburgh, 1991, p. 337.

    Google Scholar 

  73. Takeuchi S. and Kuramoto E.: Acta Metall.21 (1973) 415.

    Google Scholar 

  74. Paidar V., Pope D.P., and Vitek V.: Acta Metall.32 (1984) 435.

    Google Scholar 

  75. Khantha M., Cserti J., and Vitek V.: Scripta Metall. Mater.27 (1992) 487.

    Google Scholar 

  76. Khantha M., Cserti J., and Vitek V.: Scripta Metall. Mater.27 (1992) 481.

    Google Scholar 

  77. Darolia R., Lahrman D.F., Field R.D., Dobbs J.R., Chang K.M., Goldman E.H., and Konitzer D.G.:in Ordered Intermetallics — Physical Metallurgy and Mechanical Behaviour (Eds. Liu C.T., Cahn R.W., Sauthoff G.). Kluwer Academic Publishers, Dordrecht, 1992, p. 679.

    Google Scholar 

  78. Forbes K.R., Glatzel U., Darolia R., and Nix W.D.:in High-Temperature Ordered Intermetallic Alloys V (Eds. Baker I., Darolia R., Whittenberger J.D., Yoo M.H.). Proc. Mater. Res. Soc. Symp. 288, MRS, Pittsburgh, 1993, p. 45.

    Google Scholar 

  79. Baker I.: Mater. Sci. Eng. A192/193 (1995) 1.

    Google Scholar 

  80. Farkas D. and Vailhe C.: J. Mater. Res.8 (1993) 3050.

    Google Scholar 

  81. Mills M.J., Daw M.S., Foiles S.M., and Miracle D.B.:in High-Temperature Ordered Intermetallic Alloys V (Eds. Baker I., Darolia R., Whittenberger J.D., Yoo M.H.). Proc. Mater. Res. Soc. Symp.288, MRS, Pittsburgh, 1993, p. 257.

    Google Scholar 

  82. Parthasarathy T.A., Rao S.I., and Dimiduk D.M.: Philos. Mag. A67 (1993) 643.

    Google Scholar 

  83. Xie Z.Y., Vailhe C., and Farkas D.: Mater. Sci. Eng. A170 (1993) 59.

    Google Scholar 

  84. Pasianot R., Xie Z., Farkas D., and Savino E.J.: Modelling Simul. Mater. Sci. Eng.2 (1994) 383.

    Google Scholar 

  85. Yamaguchi M. and Umakoshi Y.: Scripta Metall.9 (1975) 637.

    Google Scholar 

  86. Farkas D., Pasianot R., Savino E.J., and Miracle D.B.:in High-Temperature Ordered Intermetallic Alloys IV (Eds. Johnson L.A., Pope D.P., Stiegler J.O.). Proc. Mat. Res. Soc. Symp.213, MRS, Pittsburgh, 1991, p. 223.

    Google Scholar 

  87. Yamaguchi M., Pope D.P., Vitek V., and Umakoshi Y.: Philos. Mag. A43 (1981) 1265.

    Google Scholar 

  88. Paidar V.: Czech. J. Phys. B26 (1976) 865.

    Google Scholar 

  89. Kroupa F. and Paidar V.: Phys. Status Solidi A33 (1976) 555.

    Google Scholar 

  90. Kléman M.: Points, Lines, and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media. J. Wiley, New York, 1983.

    Google Scholar 

  91. de Gennes P.G. and Prost J.: The Physics of Liquid Crystals. Oxford University Press, 1993.

  92. Lejček L. and Kroupa F.: Czech. J. Phys. B38 (1988) 302.

    Google Scholar 

  93. Cladis P. and Kléman M.: J. Phys. (France)33 (1972) 591.

    Google Scholar 

  94. Vitek V. and Kléman M.: J. Phys. (France)36 (1975) 59.

    Google Scholar 

  95. Lejček L., Glogarová M., and Pavel J.: Phys. Status Solidi A82 (1984) 47.

    Google Scholar 

  96. Kléman M.: J. Phys. (France)35 (1974) 595.

    Google Scholar 

  97. Lejček L.: Czech. J. Phys. B32 (1982) 767.

    Google Scholar 

  98. Pleiner H.: Liquid Crystals1 (1986) 197.

    Google Scholar 

  99. Kralj S. and Sluckin T.J.: Phys. Rev. E48 (1993) R3244.

    Google Scholar 

  100. Goodby J.W., Waugh M.A., Stein S.M., Chin E., Pindak R., and Patel J.S.: Nature337 (1989) 449.

    Google Scholar 

  101. Pettifor D.G.:in Electron Theory in Alloy Design (Eds. Pettifor D.G., Cottrell A.H.). The Institute of Materials, London, 1992, p. 81.

    Google Scholar 

  102. Finnis M.W.:in Electron Theory in Alloy Design (Eds. Pettifor D.G., Cottre A.H.). The Institute of Materials, London, 1992, p. 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr. František Kroupa in honour of his 70th birthday.

This work was supported by the U.S.-Czech S & T Program under contract No. 94048, by the National Science Foundation-International Programs, INT-93-07418 and by the Grant Agency of the Czech Republic under contract No 106/93/0513.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitek, V., Lejček, L. & Paidar, V. Models of the cores of dislocations in metals and disclinations in liquid crystals. Czech J Phys 45, 1003–1018 (1995). https://doi.org/10.1007/BF01692016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01692016

Keywords

Navigation