Skip to main content
Log in

The Peierls model for dislocation rings

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The energy of a shear dislocation ring is calculated in the framework of the Peierls model in which the displacement is represented by a density of infinitesimal dislocations in the glide plane. This avoids the introduction of an uncertain core cut-off radiusr 0 to prevent divergence in the usual treatment. The atomic misfit energy in the glide plane is accounted for explicitly and the influence of the interplanar potential on the ring energy and the core structure is studied. Whereas spontaneous formation of shear rings in a homogenous stress field can be ruled out, the emission of dislocation rings from crack tips in glide planes not containing the crack front is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orowan E.: Z. Phys.89 (1934) 634.

    Google Scholar 

  2. Cottrell A.H.:in Dislocations and Plastic Flow in Crystals, Oxford University Press, Fair Town (N.J.), 1953, p. 53.

    Google Scholar 

  3. Nabarro F.R.N.: Adv. in Phys.1 (1952) 269.

    Google Scholar 

  4. Kroupa F.: Czech. J. Phys. B10 (1960) 284.

    Google Scholar 

  5. Kroupa F.: Czech. J. Phys. B12 (1962) 191.

    Google Scholar 

  6. Kroupa F.: Philos. Mag.7 (1962) 783.

    Google Scholar 

  7. Franz H. and Kröner E.: Z. Metallkd.46 (1955) 539.

    Google Scholar 

  8. Eshelby J.D.: Proc. Roy Soc. A241 (1957) 376.

    Google Scholar 

  9. Nabarro F.R.N.: Philos. Mag.42 (1959) 912.

    Google Scholar 

  10. Kroupa F.: Phys. Status Solidi9 (1965) 27.

    Google Scholar 

  11. Schoeck G. and Püschl W.: Philos. Mag.64 (1991) 931.

    Google Scholar 

  12. Nabarro F.R.N.: Proc. Phys. Soc.59 (1947) 1197.

    Google Scholar 

  13. Chou Y.T. and Eshelby J.D.: J. Mech. Phys. Solids10 (1962) 27.

    Google Scholar 

  14. Kirchner H.O.K.: Philos. Mag. A43 (1981) 1193.

    Google Scholar 

  15. Schoeck G. and Kirchner H.O.K.: J. Phys. F., Met. Phys.8 (1977) 43.

    Google Scholar 

  16. Hirth J.P. and Lothe J.: Theory of Dislocations, John Wiley (1982).

  17. Burns S.J. and Webb W.W.: Trans. Met. Soc. AIME236 (1966) 1165.

    Google Scholar 

  18. Argon A.S.: Acta Met.35 (1987) 185.

    Google Scholar 

  19. Scattergood R.O. and Bacon D.J.: Philos. Mag.31 (1975) 179.

    Google Scholar 

  20. Kröner E.:in Kontinuum Theorie der Versetzungen und Eigenspannungen, Springer, Berlin, 1958, p. 164.

    Google Scholar 

  21. Seeger A. and Schoeck G.: Acta Met.1 (1953) 519.

    Google Scholar 

  22. Lothe J.:in Elastic Strain Fields and Dislocation Mobility (Ed. V.L. Indenbom and J. Lothe), North Holland, Amsterdam, 1992, p. 186.

    Google Scholar 

  23. Schoeck G.: Acta Met. et Mat. (in print).

  24. Hirsch P.B. and Roberts S.G.: Philos. Mag. A64 (1991) 55.

    Google Scholar 

  25. Rice J.R.: J. Mech. Phys. Solids40 (1992) 239.

    Google Scholar 

  26. Schoeck G.: J. Mech. Phys. Solids (accepted).

  27. Schoeck G.: Philos. Mag. A69 1085 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The paper is dedicated to Dr. František Kroupa in honour of his 70th birthday.

Stimulating discussions with miss Petra Fiala are gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoeck, G. The Peierls model for dislocation rings. Czech J Phys 45, 991–1002 (1995). https://doi.org/10.1007/BF01692015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01692015

Keywords

Navigation