Skip to main content
Log in

The maximal randomness principle in d-dimensional turbulence

  • Papers
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

A set of self-consistent equations in one-loop approximation in a statistical model of fully developed homogeneous isotropic turbulence, which is based on the maximal randomness principle of the incompressible velocity field with stationary energy spectral flux, is obtained. Thanks to the applied principle the model statistics becomes essentially non Gaussian. The set of equations does not possess the infrared and ultraviolet divergences near the obtained Kolmogorov spectral exponents. The solution of these equations leads to the Kolmogorov exponents, but its amplitude proportional to the Kolmogorov constantC k is negative for Euclidean dimensiond=3. Systematic investigation is made of (inertial) steady state scaling solutions for dimensions 2<d<2.55695,where constantC k (d) becomes positive. Considered in this way, the model stability is discussed in the context of widely studied fractal aspects of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyld H. W.: Ann. Phys.14 (1961) 143.

    Google Scholar 

  2. De Dominicis C. and Martin P. C.: Phys. Rev. A29 (1979) 419.

    Google Scholar 

  3. Yakhot V.: Phys. Rev. A23 (1981) 1486.

    Google Scholar 

  4. Adzhemyan L. Ts., Vasil'ev A. N., and Pis'mak Yu. M.: Teor. Mat. Fiz.57 (1983) 268.

    Google Scholar 

  5. Adzhemyan L. Ts., Antonov N. V., and Vasil'ev A. N.: Zh. Eksp. Teor. Fiz.95 (1989) 1272.

    Google Scholar 

  6. Edwards S. F. and McComb W. D. J.: Phys. A2 (1969) 157.

    Google Scholar 

  7. Yoshisawa A.J.: Phys. Soc. Japan40 (1976) 1498.

    Google Scholar 

  8. Belinicher V. N. and L'vov B. S.: Zh. Eksp. Teor. Fiz.93 (1987) 533.

    Google Scholar 

  9. Migdal A. A.: Mod. Phys. Lett. A6 (1991) 1023.

    Google Scholar 

  10. Adzhemyan L. Ts. and Nalimov M. Yu.: Preprint HU-TFT-91-65, Helsinki; Teor. Mat. Fiz.91 (1992) 294.

    Google Scholar 

  11. Castaing B.: J. Phys. (France)50 (1989) 147.

    Google Scholar 

  12. Castaing B., Gagne Y., and Hopfinger E. J.: Physica D46 (1990) 177.

    Google Scholar 

  13. Levich E.: Phys. Rep.151 (July 1987), Nos. 3 & 4, pp. 149–171.

    Google Scholar 

  14. Kraichnan R. H.: J. Fluid Mech.5 (1959) 497.

    Google Scholar 

  15. Fournier J. D. and Frisch U.: Phys. Rev. A17 (1978) 747.

    Google Scholar 

  16. Orszag S. A.:in Fluid Dynamics (eds. R. Balian and J.-L. Peube), Gordon and Breach, New York, 1977, pp. 235–374.

    Google Scholar 

  17. Nelkin M.: Phys. Rev. A9 (1974) 388.

    Google Scholar 

  18. Kolmogorov A. N.: J. Fluid Mech.13 (1962) 82.

    Google Scholar 

  19. Frisch U., Sulem P. L., Nelkin M.: J. Fluid Mech.87 (1978) 719.

    Google Scholar 

  20. Mandelbrot B. B.: The fractal Geometry of Nature, Freeman, New York, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We have greatly benefited from discussions with Dr. Altaisky from JINR Dubna. The authors (M.H. and M.S.) are grateful to D. I. Kazakov and to director D. V. Shirkov for hospitality at the Laboratory of Theoretical Physics, JINR, Dubna.

This work was supported by Fundamental Research Russian Fund, International Scientific Fund (grant R-63000) and by Slovak Grant Agency for Science (grant 2/550/93).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adzhemyan, L.T., Hnatich, M., Horvath, M. et al. The maximal randomness principle in d-dimensional turbulence. Czech J Phys 45, 491–502 (1995). https://doi.org/10.1007/BF01691686

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01691686

Keywords

Navigation