Skip to main content
Log in

Evolution of classical light statistics in coherent difference-frequency generation

  • Papers
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Classical solution of coherent nonlinear difference-frequency generation process based on the averaging of stochastic quantities over the initial photocount distributions in pump and signal input radiations is presented in this paper. The evolution of second-order light statistics in difference-frequency generation with coherent and chaotic input radiations is calculated for arbitrary values of the time or space parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmanov S.A. and Chirkin A.S.: Statistical Phenomena in Nonlinear Optics. Moskovskiy Universitet, Moscow, 1971 (in Russian).

    Google Scholar 

  2. Schubert M. and Wilhelmi B.:in Progress in Optics, Vol. 17 (ed. E. Wolf). North-Holland, Amsterdam, 1980, p. 163.

    Google Scholar 

  3. Kielich S.: The Role of Statistical Properties of Light in Linear and Nonlinear Optical Phenomena. Wydawnictwo Naukowe UAM, Poznań, 1981 (in Polish).

    Google Scholar 

  4. Akhmanov A.S., D'yakov Yu.E., and Chirkin A.S.: Introduction to Statistical Radiophysics and Optics. Nauka, Moscow, 1981 (in Russian).

    Google Scholar 

  5. Paul H.: Rev. Mod. Phys.54 (1982) 1061.

    Google Scholar 

  6. Smirnov D.F. and Troshin A.S.: Usp. Fiz. Nauk153 (1987) 233.

    Google Scholar 

  7. ‘Squeezed States of the Electromagnetic Field’ (eds. H.J. Kimble and D.F. Walls), Special Issue of J. Opt. Soc. Am. B4 (1987), No. 10.

  8. ‘Squeezed Light’ (eds. R. Loudon and P.L. Knight), Special Issue of J. Mod. Opt.34 (1987), No. 6/7.

  9. Chmela P.:in Proc. 8th Int. School of Coherent Optics (eds. O. Benda and Š. Luby). Slovak Acad. Sci., Bratislava, 1987, p. 33.

    Google Scholar 

  10. Peřina J.: Quantum Statistics of Linear and Nonlinear Optical Phenomena. Kluwer, Dordrecht-Boston, 1991.

    Google Scholar 

  11. Peřina J., Bajer J., Peřinová V., and Hradil Z.:in Modern Nonlinear Optics, Part 1 (eds. M. Evans and S. Kielich). Wiley, New York, 1993, p. 405.

    Google Scholar 

  12. Ling-An Wu, Kimble H.J., Hall J.L., and Huifa Wu: Phys. Rev. Lett.57 (1986) 2520.

    Google Scholar 

  13. Kielich S. and Piantek K.:in Modern Nonlinear Optics, Part 1 (eds. M. Evans and S. Kielich). Wiley, New York, 1993, p. 497.

    Google Scholar 

  14. Kielich S., Tanaś R. and Zawodny R.:in Modern Nonlinear Optics, Part 1 (eds. M. Evans and S. Kielich). Wiley, New York, 1993, p. 541.

    Google Scholar 

  15. Ou Z.Y., Wang L.J., and Mandel L.: Phys. Rev. A40 (1989) 1428.

    Google Scholar 

  16. Ou Z.Y., Wang L.J., Zou X.Y., and Mandel L.: Phys. Rev. A41 (1990) 1597.

    Google Scholar 

  17. Ashkin A., Boyd G.D., and Dziedzic J.M.: Phys. Rev. Lett.11 (1963) 14.

    Google Scholar 

  18. Ducuing J. and Bloembegen N.: Phys. Rev.133 (1964) A 1493.

    Google Scholar 

  19. Francois G.E.: Phys. Rev.143 (1966) 597.

    Google Scholar 

  20. Shiga F. and Imamura S.: Phys. Lett. A25 (1967) 706.

    Google Scholar 

  21. Teich M.C., Abrams R.L., and Gandrud W.B.: Optics Commun.2 (1970) 206.

    Google Scholar 

  22. Weber H.P.: IEEE J. Quant. Electron.QE-7 (1971) 189.

    Google Scholar 

  23. Krasiński J., Chudżynski S., and Majewski W.: Optics Commun.12 (1974) 304.

    Google Scholar 

  24. Bryukner F., Dneprovskiy V.S., and Khatov V.U.: Kvantovaya Elektronika1 (1974) 1360.

    Google Scholar 

  25. Dewael P.: J. Phys. A8 (1975) 1614.

    Google Scholar 

  26. Babin A.A., Belyaev Yu.N., Fortus V.M., and Freidman G.I.: Kvantovaya Elektronika3 (1976) 112.

    Google Scholar 

  27. Krasiński J. and Dinev D.: Optics Commun.18 (1976) 424.

    Google Scholar 

  28. Smirnova T.N. and Tichonov E.A.: Kvantovaya Elektronika3 (1976) 444;4 (1977) 1105.

    Google Scholar 

  29. Dutta N.K.: Opt. Quant. Electron.11 (1979) 217.

    Google Scholar 

  30. Chrostowski J.: Optica Acta27 (1980) 1401.

    Google Scholar 

  31. Chmela P.: Opt. Quant. Electron.14 (1982) 425 and 433.

    Google Scholar 

  32. Churnside J.A.: Optics Commun.51 (1984) 207.

    Google Scholar 

  33. Chmela P.: Optics Commun.53 (1985) 279.

    Google Scholar 

  34. Chmela P.: Optica Acta32 (1985) 1549.

    Google Scholar 

  35. Chmela P., Ficek Z., and Kielich S.: Optics Commun.62 (1987) 403.

    Google Scholar 

  36. Chmela P.: Czech J. Phys. B38 (1988) 283.

    Google Scholar 

  37. Chmela P., Ficek Z., and Kielich S.: Czech. J. Phys. B39 (1989) 509 and 643.

    Google Scholar 

  38. Ficek Z., Kielich S., and Chmela P.: Opt. Quant. Electron.22 (1990) 123.

    Google Scholar 

  39. Chmela P.: Czech. J. Phys. B37 (1987) 1130.

    Google Scholar 

  40. Hong C.K. and Mandel L.: Phys. Rev. A31 (1985) 2409.

    Google Scholar 

  41. Nikitin S.P., and Masalov A.V.: Quantum Optics3 (1991) 105.

    Google Scholar 

  42. Zernike F. and Midwinter J.E.: Applied Nonlinear Optics. Wiley, New York, 1973.

    Google Scholar 

  43. Chmela P.: Introduction to Nonlinear Optics I. Palacký University, Olomouc, 1982 (in Czech); Polish transl.: Państwowe Wydawnictwo Naukowe, Warsaw, 1987.

    Google Scholar 

  44. Dmitriev V.G. and Tarasov L.V.: Applied Nonlinear Optics. Radio i svyaz', Moscow 1982 (in Russian).

    Google Scholar 

  45. Shen Y.R.: The Principles of Nonlinear Optics. Wiley, New York, 1984.

    Google Scholar 

  46. Giallorenzi T.G. and Tang C.L.: Phys. Rev.166 (1968) 225.

    Google Scholar 

  47. Kleinman D.A.: Phys. Rev.174 (1968) 1027.

    Google Scholar 

  48. Paul H.: Nichtlineare Optik I, II. Akademie-Verlag, Berlin, 1973.

    Google Scholar 

  49. Chmela P.: Acta Phys. Polon. A52 (1977) 835.

    Google Scholar 

  50. Loudon R.: The Quantum Theory of Light. Clarendon Press, Oxford, 1973.

    Google Scholar 

  51. Goodman J.W.: Statistical Optics. Wiley, New York, 1985.

    Google Scholar 

  52. Goodman J.W..in Laser and Related Phenomena (ed. J.C. Dainty). Springer, New York, 1975, p. 9.

    Google Scholar 

  53. Armstrong J.A., Bloembergen N., Ducuing J., and Pershan P.S.: Phys. Rev.127 (1962) 1918.

    Google Scholar 

  54. Whitaker E.T. and Watson G.N.: A Course of Modern Analysis. Cambridge University Press, London, 1965.

    Google Scholar 

  55. Gradshteyn I.S. and Ryzhik I.M.: Tables of Integrals, Series, and Products. Academic Press, New York, 1965.

    Google Scholar 

  56. Morse P.M. and Feshbach H.: Methods of Theoretical Physics, Vol. I. McGraw-Hill, New York, 1953.

    Google Scholar 

  57. Arecchi F.T. and Degiorgio V.:in Laser Handbook, Vol. 1 (eds. F.T. Arecchi and E.O. Schultz-Dubois). North-Holland, Amsterdam, 1972, p. 194.

    Google Scholar 

  58. Hanbury Brown R.: The Intensity Interferometer. Taylor and Francis, London, 1974.

    Google Scholar 

  59. Bertolotti M., Crosignani B., Di Porto P., and Sette D.: Z. Physik205 (1967) 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author would like to thank Dr. M. Kršková and Dr. J. Bajer from the Palacký University in Olomouc for performing the numerical calculations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chmela, P. Evolution of classical light statistics in coherent difference-frequency generation. Czech J Phys 46, 541–563 (1996). https://doi.org/10.1007/BF01690675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01690675

Keywords

Navigation