Skip to main content
Log in

Creep of a Cu-2·5 at. pct. Al alloy at high temperatures

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

The creep of a Cu-2·5 at.pct. Al alloy has been investigated by the isothermal tests technique. Two dislocation mechanisms operate in parallel in the investigated temperature region. In the region of lower minimum creep rates (\(\dot \varepsilon \)<3×10−5 sec−1) — region 1 — the activation energy of creep is close to the expected value of the activation enthalpy of the lattice self-diffusion of copper in the alloy. The stress dependence of the minimum creep rate can be described by a power function of theσ n type, where n=n1=5·8. The results for region 1 can be satisfactorily correlated with the model of nonconservative motion of jogs on screw dislocations dependent on lattice self-diffusion. If a power function of theγ m type is used to describe the minimum creep rate dependence on the stacking fault energyγ, thenm is equal to −0.66.

In the region of higher minimum creep rates — region 2 — the apparent activation energy is higher than the expected value of the activation enthalpy of lattice self-diffusion of any component in the investigated alloy. The dislocation mechanism dominating in region 2 has not been identified.

The influence of stacking fault energy on the minimum creep rate in region 2 is weak or even zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pahutová M., Čadek J., Ryš P.: Acta Met.17 (1969), 745.

    Google Scholar 

  2. Howie A., Swann P. R.: Phil. Mag.6 (1961), 1215.

    Google Scholar 

  3. Čadek J., Orlová A., Cíha K.: Kovové materiály5 (1967), 461.

    Google Scholar 

  4. Rhines F. N., Mehl R. F.: Trans. AIME128 (1938), 185.

    Google Scholar 

  5. Mott N. F.: Conference on Creep and Fracture of Metals at High Temperatures, H. M. Stationery Office, London 1956, 21.

    Google Scholar 

  6. Hirsch P. B., Warrington D. H.: Phil. Mag.6 (1961), 735.

    Google Scholar 

  7. Raymond L., Dorn J. E.: Trans. Met. Soc. AIME230 (1964), 560.

    Google Scholar 

  8. Barrett C. R., Nix W. D.: Acta Met.13 (1965), 1247.

    Google Scholar 

  9. Weertman J.: J. Appl. Phys.28 (1957), 1185.

    Google Scholar 

  10. Sellars C. M., Quarrell A. G.: J. Inst. Met.90 (1961–62), 329.

    Google Scholar 

  11. Sherby O. D.: Acta Met.10 (1962), 135.

    Google Scholar 

  12. Barrett C. R., Sherby O. D.: Trans. Met. Soc. AIME233 (1965), 1116.

    Google Scholar 

  13. Bonesteel R. M., Sherby O. D.: Acta Met.14 (1966), 385.

    Google Scholar 

  14. Davies C. K. L., Davies P. W.: Phil. Mag.12 (1965), 827.

    Google Scholar 

  15. Russell B., Ham R. K., Silcock J. M., Willoughby G.: Met. Sci. J.2 (1968), 201.

    Google Scholar 

  16. Pahutová M., Hostinský T., Čadek J.: Scripta Met.3 (1969), 293.

    Google Scholar 

  17. Seeger A., Berner R., Wolf H.: Z. Phys.155 (1969), 247.

    Google Scholar 

  18. Wolf H.: Z. Naturforschung15a (1960), 180.

    Google Scholar 

  19. Garofalo F.: Fundamentals of Creep and Creep-Rupture in Metals. McMillan Co, New York, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahutova, M., Hostinsky, T., Čadek, J. et al. Creep of a Cu-2·5 at. pct. Al alloy at high temperatures. Czech J Phys 19, 1214–1228 (1969). https://doi.org/10.1007/BF01690307

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01690307

Keywords

Navigation