Skip to main content
Log in

The standard model at low energies

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The hadronic sector of the standard model at low energies is described by a nondecoupling effective field theory, chiral perturbation theory. An introduction is given to the construction of effective chiral Lagrangians, both in the purely mesonic sector and with inclusion of baryons. The connection between the relativistic formulation and the heavy baryon approach to chiral perturbation theory with baryons is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinberg S.:in Conference Summary, Proc. XXVI Int. Conference on High Energy Physics, Dallas 1992 (ED J. R. Sanford). American Inst. Phys., New York, 1993.

    Google Scholar 

  2. Weinberg S.: Physica A96 (1979) 327.

    Google Scholar 

  3. Euler H.: Ann. Phys. (Leipzig)26 (1936) 398.

    Google Scholar 

  4. Heisenberg W. and Euler H.: Z. Phys.98 (1936) 714.

    Google Scholar 

  5. Gasser J. and Leutwyler H.: Ann. Phys.158 (1984) 142.

    Google Scholar 

  6. Gasser J. and Leutwyler H.: Nucl. Phys. B250 (1985) 465.

    Google Scholar 

  7. Bagger J. A.:in Physics beyond the standard model, Proc. TASI 91, Boulder (Eds. R. K. Ellis et al.). World Scientific, River Edge, N.J., 1992.

    Google Scholar 

  8. Georgi H.: Weak Interactions and Modern Particle Theory. Benjamin/Cummings, Menlo Park, 1984.

    Google Scholar 

  9. Donoghue J. F., Golowich E., and Holstein B. R.: Dynamics of the Standard Model. Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

  10. Proc. Ringberg Workshop on Hadronic Matrix Elements and Weak Decays, Ringberg Castle, Germany, April 1988 (Eds. A. J. Buras, J.-M. Gérard and W. Huber). Nucl. Phys. B (Proc. Suppl.) 7A (1989).

  11. Proc. Workshop on Effective Field Theories of the Standard Model, Dobogókö, Hungary, Aug. 1991 (Ed. U.-G. Meißner). World Scientific, Singapore, 1992.

    Google Scholar 

  12. Leutwyler H.: Chiral effective Lagrangians, Lecture Notes in Physics, vol. 396 (Eds. H. Mitter and H. Gausterer), Springer Berlin, 1991; Nonperturbative methodsin Proc. XXVI Int. Conf. on High Energy Physics, Dallas, 1992 (Ed. J. R. Sanford), American Inst. Phys., New York, 1993.

    Google Scholar 

  13. Gasser J.:in The QCD vacuum and chiral symmetry,in Hadrons and Hadronic Matter (Eds. D. Vautherin et al.). Plenum Press, 1990.

  14. Ecker G.:in Chiral perturbation theoryin Quantitative Particle Physics: Cargèse 1992 (Eds. M. Lévy et al.). Plenum Publ. Co., New York, 1993.

    Google Scholar 

  15. Meißner U.-G.: Recent developments in chiral perturbation theory, Rep. Prog. Phys.56 (1993) 903.

    Google Scholar 

  16. Pich A.: Introduction to chiral perturbation theory, Lectures given at the 5th Mexican School of Particles and Fields, Guanajuato, Mexico, Dec. 1992, preprint CERNTH.6978/93.

  17. Adler S. L.: Phys. Rev.177 (1969) 2426.

    Google Scholar 

  18. Bell J. S. and Jackiw R.: Nuovo Cimento A60 (1969) 47.

    Google Scholar 

  19. Bardeen W. A.: Phys. Rev.184 (1969) 1848.

    Google Scholar 

  20. Wess J. and Zumino B.: Phys. Lett. B37 (1971) 95.

    Google Scholar 

  21. Witten E.: Nucl. Phys. B223 (1983) 422.

    Google Scholar 

  22. Coleman S., Wess J., and Zumino B.: Phys. Rev.177 (1969) 2239.

    Google Scholar 

  23. Callan C., Coleman S., Wess J., and Zumino B.: Phys. Rev.177 (1969) 2247.

    Google Scholar 

  24. Manohar A. V. and Georgi H.: Nucl. Phys. B234 (1984) 189.

    Google Scholar 

  25. Weinberg S.: Phys. Rev.118 (1960) 838.

    Google Scholar 

  26. Bijnens J., Ecker G., and Gasser J.: Semileptonic kaon decays,in.

    Google Scholar 

  27. Ecker G., Gasser J., Pich A., and de Rafael E.: Nucl. Phys. B321 (1989) 311.

    Google Scholar 

  28. Donoghue J. F., Ramirez C., and Valencia G.: Phys. Rev. D39 (1989) 1947.

    Google Scholar 

  29. Praszalowicz M. and Valencia G.: Nucl. Phys. B341 (1990) 27.

    Google Scholar 

  30. Bernard V., Kaiser N., and Meißner U.-G.: Nucl. Phys. B364 (1991) 283.

    Google Scholar 

  31. Ecker G., Gasser J., Leutwyler H., Pich A., and de Rafael E.: Phys. Lett. B223 (1989) 425.

    Google Scholar 

  32. Meißner U.-G.: Phys. Rep.161 (1988) 213.

    Google Scholar 

  33. Bandoc M., Kugo T., and Yamawaki K.: Phys. Rep.164 (1988) 115.

    Google Scholar 

  34. Bijnens J., Bruno C., and de Rafael E.: Nucl. Phys. B390 (1993) 501.

    Google Scholar 

  35. The DAΦNE Physics Handbook (Eds. L. Maiani, G. Pancheri and N. Paver). INFN-Frascati, 1992.

    Google Scholar 

  36. Kambor J., Missimer J., and Wyler D.: Nucl. Phys. B346 (1990) 17.

    Google Scholar 

  37. Ecker G., Kambor J., and Wyler D.: Nucl. Phys. B394 (1993) 101.

    Google Scholar 

  38. D'Ambrosio G. and Espriu D.: Phys. Lett. B175 (1986) 237.

    Google Scholar 

  39. Goity J. L.: Z. Phys. C34 (1987) 341.

    Google Scholar 

  40. Ecker G., Pich A., and de Rafael E.: Phys. Lett. B189 (1987) 363.

    Google Scholar 

  41. Cappiello L. and D'Ambrosio G.: Nuovo Cimento A99 (1988) 153.

    Google Scholar 

  42. Funck R. and Kambor J.: Nucl. Phys. B396 (1993) 53.

    Google Scholar 

  43. Ecker G., Neufeld H., and Pich A.: Phys. Lett. B278 (1992) 337; Non-leptonic kaon decays and the chiral anomaly, preprint CERN-TH.6920/93, UWThPh-1993-22.

    Google Scholar 

  44. Bijnens J., Ecker G., and Pich A.: Phys. Lett. B286 (1992) 341.

    Google Scholar 

  45. Gasser J. and Leutwyler H.: Phys. Rep. C87 (1982) 77.

    Google Scholar 

  46. Dashen R.: Phys. Rev.183 (1969) 1245.

    Google Scholar 

  47. Donoghue J. F., Holstein B. R., and Wyler D.: Phys. Rev. D47 (1993) 2089.

    Google Scholar 

  48. Bijnens J.: Phys. Lett. B306 (1993) 343.

    Google Scholar 

  49. Marsiske H. et al. (Crystal Ball Coll.): Phys. Rev. D41 (1990) 3324.

    Google Scholar 

  50. Morgan D. and Pennington M. R.: Phys. Lett. B272 (1991) 134.

    Google Scholar 

  51. Pennington M. R., Predictions forγγππ:.

    Google Scholar 

  52. Donoghue J. F. and Holstein B. R.: Photon-photon scattering, pion polarizability and chiral symmetry. Preprint UMHEP-383. Univ. of Mass., Feb. 1993.

  53. Bellucci S., Gasser J., and Sainio M. E.: (in preparation).

  54. Barr G. D. et al. (NA31 Coll.): Phys. Lett. B242 (1990) 523; B284 (1992) 440. Papadimitriou V. et al. (E731 Coll.): Phys. Rev. D44 (1991) 573.

    Google Scholar 

  55. Cappiello L., D'Ambrosio G., and Miragliuolo M.: Phys. Lett. B298 (1993) 423.

    Google Scholar 

  56. Cohen A. G., Ecker G., and Pich A.: Phys. Lett. B304 (1993) 347.

    Google Scholar 

  57. Gasser J., Sainio M. E., and Švarc A.: Nucl. Phys. B307 (1988) 779.

    Google Scholar 

  58. Krause A.: Helvetica Phys. Acta63 (1990) 3.

    Google Scholar 

  59. Goldberger M. and Treiman S. B.: Phys. Rev.110 (1958) 1178.

    Google Scholar 

  60. Meißner U.-G.: Int. J. Mod. Phys. E1 (1992) 561.

    Google Scholar 

  61. Isgur N. and Wise M.: Phys. Lett. B232 (1989) 113; B237 (1990) 527.

    Google Scholar 

  62. Grinstein B.: Nucl. Phys. B339 (1990) 253.

    Google Scholar 

  63. Eichten E. and Hill B.: Phys. Lett. B234 (1990) 511.

    Google Scholar 

  64. Georgi H.: Phys. Lett. B240 (1990) 447.

    Google Scholar 

  65. Jenkins E. and Manohar A. V.: Phys. Lett. B255 (1991) 558.

    Google Scholar 

  66. Mannel T., Roberts W., and Ryzak Z.: Nucl. Phys. B368 (1992) 204.

    Google Scholar 

  67. Bernard V., Kaiser N., Kambor J., and Meißner U.-G.: Nucl. Phys. B388 (1992) 315.

    Google Scholar 

  68. Jenkins E. and Manohar A. V.:in. Manohar A. V.: Chiral perturbation theory, preprint UCSD/PTH 93-12.

    Google Scholar 

  69. Bernard V., Gasser J., Kaiser N., and Meißner U.-G.: Phys. Lett. B268 (1991) 291.

    Google Scholar 

  70. Davidson R. M.: Czech. J. Phys.44 (1994) 365 (this issue).

    Google Scholar 

  71. Vainshtein A. I. and Zakharov V. I.: Yad. Fiz.12 (1970) 610 [Sov. J. Nucl. Phys.12 (1971) 333]; Nucl. Phys. B36 (1972) 589.

    Google Scholar 

  72. de Baenst P.: Nucl. Phys. B24 (1970) 633.

    Google Scholar 

  73. Scherer S., Koch J. H., and Friar J. L.: Nucl. Phys. A552 (1993) 515.

    Google Scholar 

  74. Bernard V., Kaiser N., and Meißner U.-G.: Nucl. Phys. B383 (1992) 442.

    Google Scholar 

  75. Bernard V., Kaiser N., and Meißner U.-G.: Testing nuclear QCD:γpπ 0 p at threshold, Preprint BUTP-92/13, Univ. Bern, 1992. To appear inπ N Newsletter No. 7 (1992) 62.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by FWF, Project No. P09505-PHY (EURODAφNE Collaboration).

I want to thank Jürg Gasser and Helmut Neufeld for helpful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ecker, G. The standard model at low energies. Czech J Phys 44, 405–430 (1994). https://doi.org/10.1007/BF01689769

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01689769

Keywords

Navigation