Advertisement

Wärme - und Stoffübertragung

, Volume 17, Issue 1, pp 31–38 | Cite as

Snow melting with radiative heating

  • M. Sugawara
  • N. Seki
  • S. Fukusako
  • T. Ota
Article

Abstract

This paper is concerned with the melting of a packed snow heated by the radiative energy which is the blackbody radiation having source temperature of 3200 °K and short radiative energy. A transfer of the radiation in snow is significantly affected by both the porosity of snow and water saturation. The internal melting in snow is greatly characteristic for radiative heating which is to be produced by absorbing of a comparatively short wave radiation. In this study, an analysis is attempted to predict the variation of snow density, the moving rate of dry-wet interface of snow due to percolation of melt water, and the transient temperature distribution in dry snow zone located under wet snow zone.

Keywords

Water Saturation Radiative Energy Source Temperature Short Wave Short Wave Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

d

mean value of snow particle diameter

Ebv

monochromatic emissive power of blackbody

g

acceleration of gravity

h

length from initial top surface of snow layer

ke

extinction coefficient of snow

L

latent heat of melting

P

non-dimensional capillary suction pressure

Pc

capillary suction pressure

pt

total pressure

qr{y}

short wave radiation transfered through snow layer

qr0

radiative heat flux impinging on the top surface of snow layer

q0

short wave radiation obtained using water filter, Eq. (9)

q1

short wave radiation absorbed in the top surface from the standpoint of numerical analysis, Eq. (24)

q2

long wave radiation absorbed in the top surface

qme

net amount of heat flux utilized for surface melting, Eq. (25)

S

water saturation

Smin

critical water saturation of capillary force acting

t

time

T

temperature

W

percolation rate of melt water

y

coordinate

Greek Symbols

α

heat transfer coefficient

β

reflectance

γ

way factor

ε

porosity of snow

κ

thermal diffusivity of snow

λ

thermal conductivity of snow

μ

coefficient of viscosity

ν

wavelength

νc

critical wavelength

ϱ

density

σ

Stefan-Boltzmann constant

τ

surface tension

ϕ

shape coefficient

Subscript

d

seepage front

i

ice

in

initial

s

surface of snow layer

sn

snow

w

water

environment

Schneeschmelzen durch Strahlungsheizung

Zusammenfassung

Die Arbeit befaßt sich mit dem Schmelzen von kompaktem Schnee durch Strahlungsenergie, die entweder von einem schwarzen Strahler von 3200 K oder von dessen kurzwelligem Spektralbereich stammte. Die Übertragung von Strahlung auf Schnee hängt stark von Porosität und Wassersättigung ab. Das innere Schmelzen von Schnee ist charakteristisch für eine Strahlungsheizung, bei der kurzwellige Strahlung absorbiert wird. In dieser Studie werden Voraussagen angegeben für die Änderung der Schneedichte, der Geschwindigkeit der Trocken/Naß-Grenze, die durch das Eindringen von Schmelzwasser entsteht, und der nichtstationären Temperaturverteilung in der trockenen Zone, die unter der nassen liegt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golbeck, S. G.; Devidson, G.: Water percolation through homogeneous snow. The role of snow and ice in hydrology, Proceeding of the Banff Symposia. (1973) 242–257Google Scholar
  2. 2.
    Wakahama, G.: Infiltration of melt water into snow cover I. Low Temp. Sc. (Japan). Ser. A. 21 (1963) 45–71Google Scholar
  3. 3.
    Yoshida, Z.: Infiltration of thaw water into a dry snow cover. Low Temp. Sc. (Japan). Ser. A. 31 (1973) 117–133Google Scholar
  4. 4.
    Kuroiwa, D.: Liquid permeability of snow. Low Temp. Sc. (Japan). Ser. A. 26 (1968) 29–52Google Scholar
  5. 5.
    Gilpin, R. R.: Heat transfer in a horizontal water layer with radiative heating. Trans. CSME. 1 (1972) 213–218Google Scholar
  6. 6.
    Seki, N.; Sugawara, M.; Fukusako, S.: Radiative melting of a horizontal clear ice layer. Wärme-Stoffübertrag. 11 (1978) 207–216Google Scholar
  7. 7.
    Seki, N.; Fukusako, S.; Tanaka, M.: Drying of porous media included water under the heating condition of high heat flux. JSME 43 (1977) 1086–1095Google Scholar
  8. 8.
    Ohtani, S.: Drying and heat transfer. Res. Mech. Eng. (Japan) 21 (1969) 129–139Google Scholar
  9. 9.
    Weller, G. E.: The heat budget and heat transfer processes in antarctic plateau ice and sea ice. Anare Scientific Reports, Ser. A (IV) Glaciology, Publication No. 102 (1969)Google Scholar
  10. 10.
    Seki, N.; Sugawara, M.; Fukusako, S.: Back-melting of a horizontal cloudy ice layer with radiative heating. ASME J. Heat Transfer. 101 (1979) 90–95Google Scholar
  11. 11.
    Yoshida, Z.: Internal melting of snow due to the penetrating sunlight. Low Temp. Sc. (Japan). Ser. A. 19 (1960) 97–110Google Scholar
  12. 12.
    Oura, J.: Reflection and transmission of light by snow cover II. Low Temp. Sc. (Japan). 6 (1951) 35–40Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Sugawara
    • 1
  • N. Seki
    • 2
  • S. Fukusako
    • 2
  • T. Ota
    • 1
  1. 1.Department of Mechanical EngineeringAkita UniversityAkitaJapan
  2. 2.Department of Mechanical EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations