Wärme - und Stoffübertragung

, Volume 17, Issue 1, pp 1–9 | Cite as

Estimate of the transient conduction of heat in materials with linear thermal properties based on the solution for constant properties

  • A. Campo


A method of analysis is described which yields quasianalytical solutions for one and multidimensional unsteady heat conduction problems with linearly dependent thermal properties, such as thermal conductivity and volumetric specific heat. The method accomodates rather general thermal boundary conditions including arbitrary variations in surface temperature or in surface heat flux or a convective exchange with a fluid having even varying temperature. Once the solution for the identical problem but with constant properties has been developed, its practical realization is rather direct, being facilitated by a reduced number of iterations. The four applied examples given in this work show that a wide variety of nonlinear heat conduction problems can be tackled by this procedure without much difficulty. These simple solutions compare favorably with more laborious results reported in the archival heat transfer literature.


Heat Flux Surface Heat Flux Heat Conduction Problem Thermal Boundary Condition Constant Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



side of square bar


reference Biot number,hR/k0


transformed Biot number, equation (16)


geometric parameter, equation (8)


convective coefficient


thermal conductivity


value ofk atT0


dimensionless thermal conductivity,k/k0


value ofK at Φi


value ofK at Φi+1


slope of theK-Φ line, equation (3)


slope of theS-Φ line, equation (4)


characteristic length


volumetric specific heat


value of s at T0


dimensionless volumetric specific heat, s/s0


value ofS at Φi


value of S at Φi+1






reference temperature

x, y

cartesian coordinates

X, Y

dimensionless cartesian coordinates,x/a andy/a


thermal diffusivity


transformed time, equation (11)


transformed time, equation (37)


dimensionless time for variable conductivity, equation (8)


dimensionless time for variable specific heat, equation (34)


dimensionless temperature,T/T0


dimensionless coordinate,r/R


value of α at T0


lower value of the interval (Φi, Φi+1)


upper value of the interval (Φi, Φi+1

Berechnung nichtstationärer Wärmeleitvorgänge mit linear temperaturabhängigen Stoffwerten aus der Lösung für konstante Stoffwerte


Es werden quasi-analytische Lösungen für ein- und mehrdimensionale nichtstationäre Wärmeleitprobleme mit linear temperaturabhängigen Stoffwerten, wie Wärmeleitfähigkeit und volumetrische Wärmekapazität, mitgeteilt. Die Methode gilt für recht allgemeine Randbedingungen wie beliebige Veränderungen der Oberflächentemperatur, der Wärmestromdichte oder auch konvektiven Wärmeaustausch mit veränderlicher Fluidtemperatur. Ist die Lösung für das identische Problem mit konstanten Stoffwerten bekannt, kann die Methode direkt mit einer begrenzten Zahl von Iterationen angewandt werden. Die vier hier mitgeteilten Beispiele zeigen, daß eine große Zahl nichtlinearer Wärmeleitprobleme auf diese Weise ohne Schwierigkeit angepackt werden können. Die einfachen Lösungen stimmen befriedigend mit komplizierteren Ergebnissen aus der Literatur überein.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Touloukian, Y. S.; Ho, C. Y.: Thermophysical properties of matter. The TPRC Series. New York: Plenum 1970Google Scholar
  2. 2.
    Heisler, M. P.: Temperature charts for induction and constant temperature heating. Trans. ASME 69 (1947) 227–236Google Scholar
  3. 3.
    Biot, M. A.: New methods in heat flow analysis with applications to flight structures. J. Aero. Sci. 24 (1957) 857–873Google Scholar
  4. 4.
    Friedmann, N. E.: Quasilinear heat flow. Trans. ASME 80 (1958) 635–644Google Scholar
  5. 5.
    Yang, K. T.: Transient conduction in semi-infinite solids with variable thermal conductivity. Trans ASME 25 (1958) 146–147Google Scholar
  6. 6.
    Goodman, T. R.: Application of integral methods to transient book nonlinear heat transfer. Adv. Heat Transfer 1 (1964)Google Scholar
  7. 7.
    Cobble, M. H.: Nonlinear heat transfer of solids in orthogonal coordinate systems. Int. J. Non-Linear Mech. 2 (1967) 417–426Google Scholar
  8. 8.
    Dowty, E. L.; Haworth, D. R.: Generalized solutions for transient heat conduction with variable conductivity. Nucl. Eng. Des. 6 (1967) 57–64Google Scholar
  9. 9.
    Hays, D. F.; Curd, H. N.: Heat conduction in solids: Temperature dependent thermal conductivity. Int. J. Heat Mass Transfer 11 (1968) 285–295Google Scholar
  10. 10.
    Lorenzini, E.; Carpaneto, G.; Toth, P.: Sulla validità di una formulazione variazionale per la trasmissione termica. La Termotecnica 24 (1970) 426–432Google Scholar
  11. 11.
    Devochkina, S. I.; Brovkin, L. A.: Temperature fields of an infinite plate with variable thermophysical characteristics. J. Eng. Phys. 18 (1970) 138Google Scholar
  12. 12.
    Yampol'skiy, N. G.; Ayzen, A. M.: Concerning a method for solving nonlinear heat conduction problems. Heat Transfer-Sov. Res. 2 (1970) 114Google Scholar
  13. 13.
    Luikov, A. V.: Methods of solving the nonlinear equations of unsteady-state conduction. Heat Transfer-Sov. Res. 3 (1971) 1Google Scholar
  14. 14.
    Katayama, K.: Numerical method of transient heat conduction with temperature dependent thermal properties. Bull. Jap. Soc. Mech. Eng. 15 (1972) 1394Google Scholar
  15. 15.
    Vujanovic, B.: Application of the optimal linearization method to the heat transfer problem. Int. J. Heat Mass Transfer 16 (1973) 1111–1117Google Scholar
  16. 16.
    Mingle, J. O.: Computational considerations in nonlinear diffusion. Int. J. Num. Meth. Eng. 7 (1973) 103–116Google Scholar
  17. 17.
    Aguirre, G.; Oden, J. T.: Finite element technique applied to heat conduction in solids with temperature dependent thermal conductivity. Int. J. Num. Meth. Eng. 7 (1973) 345–355Google Scholar
  18. 18.
    Toal, J. J.; Chu, S. C.; Leech, W. J.: Piecewise polynomials and the partition method for heat conduction of solids with temperature-dependent specific heat. Int. Conf. Thermal Conductivity, Rolla, Missouri 1973Google Scholar
  19. 19.
    Jalin, R.: Comparative study of some methods for solving the nonlinear thermal diffusion equation. Int. Conf. Thermal Conductivity, Rolla, Missouri 1973Google Scholar
  20. 20.
    Mastanaiah, K.; Muthunayagam, A. E.: Transient conduction in a finite slab with variable conductivity. AIAA J. 13 (1975) 954–956Google Scholar
  21. 21.
    Krajewski, B.: On a direct variational method for nonlinear heat transfer. Int. J. Heat Mass Transfer 18 (1975) 495–502Google Scholar
  22. 22.
    Chung, B. T. F.; Yeh, L. T.: Analysis of heat transfer in slabs with variable properties subjected to radiation and convection. ASME Paper No. 75-WA/HT-67 (1975)Google Scholar
  23. 23.
    Aziz, A.; Benzies, J. Y.: Application of perturbation techniques to heat transfer problems with variable thermal properties. Int. J. Heat Mass Transfer 19 (1976) 271–276Google Scholar
  24. 24.
    Mastanaiah, K.: On the numerical solution of phase change problems in transient nonlinear heat conduction. Int. J. Num. Meth. Eng. 10 (1976) 833–844Google Scholar
  25. 25.
    Caussade, B. H.: Simulation hybride de phenomes de diffusion en regime no lineare. Trans. IMACS 18 (1976) 180–185Google Scholar
  26. 26.
    Hughes, T. J. R.: Unconditionally stable algorithms for nonlinear heat conduction. Comp. Meth. Appl. Mathem. Eng. 10 (1977) 135–139Google Scholar
  27. 27.
    Tauchen, T. R.: A residual method with Lagrange multipliers for transient heat conduction problems. J. Heat Transfer 99 (1977) 495–496Google Scholar
  28. 28.
    Mehta, R. C.: On the solution of transient conduction with temperature-dependent thermal conductivity. J. Heat Transfer 99 (1977) 137–139Google Scholar
  29. 29.
    Sucec, J.; Hedge, S.: Transient conduction in a slab with temperature dependent thermal conductivity. J. Heat Transfer 100 (1978) 172–174Google Scholar
  30. 30.
    Lin, S. H.: Transient heat conduction with temperaturedependent thermal conductivity by the orthogonal collocation method. Lett. Heat Mass Transfer 5 (1978) 29–39Google Scholar
  31. 31.
    Aleksashenko, A. A.: Analytic methods for determining nonlinear thermophysical parameters without linearization of the thermal conductivity equation. Power Eng. (1978) 104–141Google Scholar
  32. 32.
    Baclic, B. S.: Optimal reference temperature for thermophysical properties in transient nonlinear heat conduction problems. Int. Heat Transfer Conf. (1978) 269–274Google Scholar
  33. 33.
    Orivuori, S.: Efficient method for solution of nonlinear heat conduction problems. Int. J. Num. Meth. Eng. 14 (1979) 1461–1476Google Scholar
  34. 34.
    Pshenichnov, Y. A.: Initial stage of heat conduction with temperature-dependent physical properties. High Temp. 15 (1979) 875–878Google Scholar
  35. 35.
    Seeniraj, V.; Arunachalam, M.: Heat conduction in a semiinfinite solid with variable thermophysical properties. Int. J. Heat Mass Transfer 22 (1979) 1455–1456Google Scholar
  36. 36.
    Sodha, M. S.: Periodic heat transfer with temperature dependent thermal conductivity. Int. J. Heat Mass Transfer 22 (1979) 777–781Google Scholar
  37. 37.
    Meric, R. A.: Finite element analysis of optimal heating of a slab with temperature dependent thermal conductivity. Int. J. Heat Mass Transfer 22 (1979) 1347–1353Google Scholar
  38. 38.
    Soliman, M. A.: A method for linearizing non-linear heat transfer problems. J. Eng. Sci. 5 (1979) 199–206Google Scholar
  39. 39.
    Ventura, M. A.; Ferreri, J. C.: Cómputo de la conducción de calor no estacionaria en sólidos con propiedades variables con la temperatura. Rev. Latinoam. Transfer. Cal. Mat. 4 (1980) 121–130Google Scholar
  40. 40.
    Fasicka, R. G.; Westermann, E. L.: Thermal response of slabs subjected to non-symmetric convective heat transfer. J. Mech. Des. 100 (1978) 706–714Google Scholar
  41. 41.
    Luikov, A. V.: Analytical Heat Diffusion Theory. New York: Academic Press 1968Google Scholar
  42. 42.
    Berger, F.: Über die Berechnung des Temperaturverlaufes in einem Rechtkant beim Abkühlen und Erwärmen. Z. Angew. Math. Mech. 8 (1928) 479, also ibid 11 (1931) 45Google Scholar
  43. 43.
    Newman, A. B.: AIChE J. 42 (1930) 44Google Scholar
  44. 44.
    Budrin, D. W.; Krassowski, B. A.: Studies of the Uralian Industrial Institute 1941, (in Russian)Google Scholar
  45. 45.
    Campo, A.: A quasilinearization approach for the transient response of bodies with surface radiation. Lett. Heat Mass Transfer 4 (1977) 291–298Google Scholar
  46. 46.
    Sha, W. C.; Ganic, E. N.: Transient heat conduction at low Biot numbers: A supplement to Heisler's charts. Lett. Heat Mass Transfer 8 (1981) 379–395Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • A. Campo
    • 1
  1. 1.Departamento de TermodinámicaUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations