Skip to main content
Log in

Biochemical changes during progesterone-induced maturation in xenopus laevis oocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The main biochemical changes which occur, when maturation is induced in isolatedX. laevis oocytes by the addition of progesterone to the medium, are discussed. The following points are presented:

  1. 1.

    The peripheric region of the oocyte contains a specific receptor for progesterone; it is a protein with a sedimentation constant of 15–18S.

  2. 2.

    It is doubtful that cAMP plays a direct role in the initiation of maturation.

  3. 3.

    Experiments with inhibitors (KCN, dinitrophenol) show that maturation requires the production of energy.

  4. 4.

    There is no DNA synthesis — except mito-chondrial DNA synthesis — during maturation; the latter is possible in the presence of inhibitors of DNA synthesis (hydroxyurea, 2'-d-adenosine, cytosine arabinoside, bromodeoxyuridine, dimethylbenzyl-rifampicine, ethidium bromide, X-rays).

  5. 5.

    Actinomycin D and, to a lesser extent, α-amanitin speed up maturation. Cordycepin has no effect on this process.

  6. 6.

    Protein synthesis is required for maturation; but experiments with cycloheximide and puromycin have shown that the breakdown of the germinal vesicle (G.V.) is still possible when protein synthesis is inhibited by 50%. Progesterone induces a transient increase in protein synthesis, which is followed by a strong inhibition.

  7. 7.

    Progesterone induces the synthesis or release of 2 antagonistic factors: one of them (MPF) promotes maturation; the other (PIF) produces a special kind of abortive maturation, which has been calledpseudomaturation. PIF becomes detectable several hours before MPF; it produces, after injection into the oocytes, an 80 to 90% inhibition of protein synthesis. Preliminary characterization of PIF indicates that it is neither a protease nor a ribonuclease. It is localized in the outer part of the oocyte and is, in part, attached to membranes. It is thermolabile, non dialyzable.

It is concluded that progesterone controls maturation, at the post-transcriptional level, by the production of two antagonistic factors (MPF and PIF), which respectively exert a positive and a negative regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Brachet, Arch. exper. Zellforschung 22, 541 (1939).

    Google Scholar 

  2. J. Brachet, Arch. Biol. 53, 207–257 (1941).

    Google Scholar 

  3. T. A. Dettlaff, L. A. Nikitina & O. G. Stroeva, J. exp. Embryol. Morphol. 12, 851–873 (1964).

    Google Scholar 

  4. L. D. Smith and R. A. Ecker, Curr. Topics in Dev. Biol. 5, 1–38 (1971).

    Google Scholar 

  5. S. Schorderet-Slatkine, Cell Differentiation 1, 179–189 (1972).

    PubMed  Google Scholar 

  6. Y. Masui and C. L. Markert, J. exp. Zool. 177, 129–146 (1971).

    PubMed  Google Scholar 

  7. J. Brachet, F. Hanocq, and P. van Gansen, Dev. Biol. 21, 157–196 (1970).

    PubMed  Google Scholar 

  8. E. Baltus, J. Brachet, J. Hanocq-Quertier and E. Hubert, Differentiation 1, 127–143 (1973).

    Google Scholar 

  9. J. B. Gurdon, J. exp. Embryol. Morphol. 20, 401–414 (1968).

    Google Scholar 

  10. M. B. Yatvin and H. C. Pitot, Nature 223, 62 (1969).

    PubMed  Google Scholar 

  11. G. Morrill and J. B. Murphy, Nature 238 282–284, (1972).

    PubMed  Google Scholar 

  12. M. Wiblet, Arch. int. Physiol. Bioch. 81, p. 21 (1973).

    Google Scholar 

  13. J. Brachet and R. Tencer, Acta Embryol. exper. 83–104 (1973).

  14. D. D. Brown and I. B. Dawid, Science 160, 272–280 (1968).

    PubMed  Google Scholar 

  15. J. B. Gurdon, Proc. natl. Acad. Sci. N.Y. 58, 545–552 (1968).

    Google Scholar 

  16. J. B. Gurdon, M. L. Birnstiel and V. A. Speight, Bioch. biophys. Acta 174, 614–628 (1969).

    Google Scholar 

  17. P. Grippo and A. Lo Scavo, Bioch. biophys. Res. Comm. 48, 280–285 (1972).

    Google Scholar 

  18. Y. Hotta and H. Stern, J. mol. Biol. 55, 337–355 (1971).

    PubMed  Google Scholar 

  19. R. Riley and M. D. Bennett, Nature 230, 182–185 (1971).

    PubMed  Google Scholar 

  20. G. Huez, F. Zampetti-Bosseler and J. Brachet, Nature New Biol. 74, 155–157 (1972).

    Google Scholar 

  21. P. M. Wassarman, Biol. Bull. 141, 405–406 (1971).

    Google Scholar 

  22. E. Perkowska, H. C. MacGregor and M. L. Birnstiel, Nature 217, 649–650 (1968).

    PubMed  Google Scholar 

  23. J. B. Gurdon and V. A. Speight, Exptl. Cell Res. 55, 253–256 (1969).

    PubMed  Google Scholar 

  24. E. Baltus, J. Hanocq-Quertier, and J. Brachet, Proc. natl. Acad. Sci. N.Y. 61, 469–476 (1968).

    Google Scholar 

  25. G. A. Morrill and F. A. Schatz, Fed. Proc. 32, 2253 (1973).

    Google Scholar 

  26. R. W. Merriam, J. exp. Zool. 180, 421–426 (1972).

    Google Scholar 

  27. Y. Masui, J. exp. Zool. 179, 365–378 (1972).

    Google Scholar 

  28. V. Vacquier, M. J. Tegner and D. Epel, Exptl. Cell Res. 80, 111–119 (1973).

    PubMed  Google Scholar 

  29. J. K. Reynhout and L. D. Smith, Developm. Biol. 30, 392–402 (1973).

    Google Scholar 

  30. H. Wallace, J. Morray and W. H. R. Langridge, Nature 230, 201–203 (1971).

    Google Scholar 

  31. D. D. Brown and A. W. Blackler, J. mol. Biol. 63, 75–83 (1972).

    PubMed  Google Scholar 

  32. J. W. Chase and I. B. Dawid, Dev. Biol. 27, 504–518 (1972).

    PubMed  Google Scholar 

  33. E. B. Thompson, D. K. Grenner and G. M. Tomkins, J. mol. Biol. 54, 159–175 (1970).

    PubMed  Google Scholar 

  34. R. D. Palmiter and R. T. Schimke, J. biol. Chem. 248, 1502–1512 (1973).

    PubMed  Google Scholar 

  35. A. A. Moscona, M. Moscona and R. E. Jones, Bioch. Biophys. Res. Comm. 39, 943–949 (1970).

    Google Scholar 

  36. I. Slater, D. Gillepsie and D. W. Slater, Proc. Natl. Acad. Sci. N.Y. 70, 406–411 (1973).

    Google Scholar 

  37. F. H. Wilt, Proc. natl. Acad. Sci. N.Y. 70, 2345–2349 (1973).

    Google Scholar 

  38. F. Zampetti-Bosseler and J. Brachet, J. Arch. Biol. 83, 535–546 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Solicited manuscript. This paper is dedicated to the memory of Prof.A. M. Dalcq, a pioneer in the study of maturation.

Work partly done at Laboratorio di Embriologia molecolare. CNR, 80072 Arco Felice. Napoli.

Maître de recherches au Fonds National de la Recherche Scientifique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brachet, J., Baltus, E., De Schutter, A. et al. Biochemical changes during progesterone-induced maturation in xenopus laevis oocytes. Mol Cell Biochem 3, 189–205 (1974). https://doi.org/10.1007/BF01686644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01686644

Keywords

Navigation