Zeitschrift für Physik B Condensed Matter

, Volume 47, Issue 1, pp 71–77 | Cite as

Nonequilibrium spatio-temporal selforganization due to delayed negative feedback

  • G. T. Gurija
  • M. A. Livshits


A soft transition of a nonequilibrium system to an oscillatory or a wave state is shown to be stipulated by the effectively delayed negative feedback. The transition to the wave states is considered for the model system implying temporal and spatial nonlocalities. In the vicinity of the critical point the behaviour of the system is described by the slow dynamics of two complex order parameters. The two different types of branching solutions-running and standing waves—can not be stable simultaneoully.


Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhabotinski, A.M.: Chemical Oscillations. Moscow: Nauka 1974Google Scholar
  2. 2.
    Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems. New York: Wiley 1977Google Scholar
  3. 3.
    Haken, H.: Synergetics. Berlin: Springer 1978Google Scholar
  4. 4.
    Turing, A.M.: Philos. Trans. R. Soc. London Ser. B234, 37 (1952)Google Scholar
  5. 5.
    Nitzan, A., Ortoleva, P.: Phys. Rev. A21, 1735 (1980)Google Scholar
  6. 6.
    Kuramoto, Y., Tsuzuki, T.: Prog. Theor. Phys.54, 687 (1975)Google Scholar
  7. 7.
    Haken, H.: Z. Phys. B-Condensed Matter21, 105 (1975); B-Condensed Matter22, 69 (1975)Google Scholar
  8. 8.
    Wunderlin, A., Haken, H.: Z. Phys. B-Condensed Matter21, 393 (1975)Google Scholar
  9. 9.
    Belintsev, B.N., Livshits, M.A., Volkenstein, M.V.: Dokl. Acad. Nauk., USSR257, 487 (1981)Google Scholar
  10. 10.
    Belintsev, B.N., Livshits, M.A., Volkenstein, M.V.: Phys. Lett.82A, 375 (1981)Google Scholar
  11. 11.
    Belintsev, B.N., Livshits, M.A., Volkenstein, M.A.: Z. Phys. B-Condensed Matter44, 345 (1981)Google Scholar
  12. 12.
    Mac Donald, N.: Time lags in biological models. Lecture Notes in Biomathematics. Vol. N27. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  13. 13.
    Elsgolts, L.E., Norkin, S.B.: Introduction to the theory of differential-difference equations. Moscow: Nauka 1971Google Scholar
  14. 14.
    Lefever, R., Nicolis, G., Prigogine, I.: J. Chem. Phys.47, 1045 (1967)Google Scholar
  15. 15.
    Vasilenko, V.G., Spektor, M.D., Kuznetsov, E.A., Lvov, V.S., Nesterihin, Y.B., Sobolev, V.S., Timohin, S.A., Utkin, E.N., Shmoylov, N.F.: Prikl. Mehan. Tehn. Fisika2, 58 (1980)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. T. Gurija
    • 1
  • M. A. Livshits
    • 1
  1. 1.Institute of Molecular BiologyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations