Skip to main content
Log in

The anaerobic fungusPiromyces sp. strain E2: nitrogen requirement and enzymes involved in primary nitrogen metabolism

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The anaerobic fungusPiromyces sp. strain E2 appeared restricted in nitrogen utilization. Growth was only supported by ammonium as source of nitrogen. Glutamine also resulted in growth, but this was due to release of ammonia rather than to uptake and utilization of the amino acid. The fungus was not able to grow on other amino acids, albumin, urea, allantoin, or nitrate. Assimilation of ammonium is very likely to be mediated by NADP-linked glutamate dehydrogenase (NADP-GDH) and glutamine synthetase (GS). One transaminating activity, glutamate-oxaloacetate transaminase (GOT), was demonstrated. Glutamate synthase (GOGAT), NAD-dependent glutamate dehydrogenase (NAD-GDH), and the transaminating activity glutamate-pyruvate transaminase (GPT) were not detected in cell-free extracts ofPiromyces sp. strain E2. Specific enzyme activities of both NADP-GDH and GS increased four-to sixfold under nitrogen-limiting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GDH :

Glutamate dehydrogenase

GOGAT :

Glutamate synthase

GOT :

Glutamate-oxaloacetate transaminase

GPT :

Glutamate-pyruvate transaminase

GS :

Glutamine synthetase

References

  • Arst HM, Parbtani AAM, Cove DJ (1975) A mutant ofAspergillus nidulans defective in NAD-linked glutamate dehydrogenase. Mol Gen Genet 138:165–171

    Google Scholar 

  • Asao N, Ushida K, Kojima Y (1993) Proteolytic activity of rumen fungi belonging to the generaNeocallimastix andPiromyces. Lett Appl Microbiol 16:247–250

    Google Scholar 

  • Baars JJP, Op den Camp HJM, Hermans JHM Mike V, Van der Drift C, Van Griensven LJLD, Vogels GD (1994) Nitrogen assimilating enzymes in the white button mushroomAgaricus bisporus. Microbiology 140:1161–1168

    Google Scholar 

  • Baars JJP, Op den Camp HJM, Van der Drift C, Van Griensven LJLD, Vogels GD (1995a) Regulation of nitrogen metabolising enzymes in the commercial mushroomAgaricus bisporus. Curr Microbiol 31:345–350

    Google Scholar 

  • Baars JJP, Op den Camp HJM, Van Hoek AHAM, Van der Drift C, Van Griensven LJLD, Vogels GD (1995b) Purification and characterization of NADP-dependent glutamate dehydrogenase from the commercial mushroomAgaricus bisporus. Curr Microbiol 30:211–217

    PubMed  Google Scholar 

  • Bergmeyer HU, Beutler HO (1985) Determination of ammonia. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 8. Verlag Chemie, Weinheim Basel, pp 454–461

    Google Scholar 

  • Brown CM, Macdonald-Brown DS, Meers JL (1974) Physiological aspects of microbial inorganic nitrogen metabolism. Adv Microb Physiol 11:1–52

    Google Scholar 

  • Burn VJ, Turner PR, Brown CM (1974) Aspects of inorganic nitrogen assimilation in yeasts. Antonie van Leeuwenhoek 40:93–102

    PubMed  Google Scholar 

  • genetet I, Martin F, Stewart GR (1984) Nitrogen assimilation in mycorrhizas. Plant Physiol 76:395-39

    Google Scholar 

  • Goldin BR, Frieden C (1971)l-Glutamate dehydrogenases. Curr Top Cell Regul 4:77–117

    Google Scholar 

  • Gulati SK, Ashes JR, Gordon GLR, Connel PJ, Rogers PL (1989) Nutritional availability of amino acids from the rumen anaerobic fungusNeocallimastix sp. LM1 in sheep. J Agric Sci (Camb) 113:383–387

    Google Scholar 

  • Holmes AR, Collings A, Famden KJF, Shepherd MG (1989) Ammonium assimilation byCandida albicans and other yeasts: evidence for activity of glutamate synthase. J Gen Microbiol 135:1423–1430

    PubMed  Google Scholar 

  • Kusnan MB, Berger MG, Fock HP (1987) The involvement of glutamine synthetase/glutamate synthase in ammonia assimilation byAspergillus nidulans. J Gen Microbiol 133:1235–1242

    PubMed  Google Scholar 

  • Lara M, Blanco L, Campomanes M, calva E, Palacios R, Mora J (1982) Physiology of ammonium assimilation inNeurospora crassa. J Bacteriol 150:105–112

    PubMed  Google Scholar 

  • Lejohn HB (1971) Enzyme regulation, lysine pathways and cell wall structures as indicators of major lines of evolution of fungi. Nature 231:164–168

    PubMed  Google Scholar 

  • Marounek M, Vovk SJ (1992) Distribution of radioactivity of14C-amino acids added to the medium in cells and metabolites in cultures of rumen fungi. Reprod Nutr Dev 32:129–133

    PubMed  Google Scholar 

  • Marvin-Sikkema FD, Lahpor GA, Kraak MN, Gottschal JC, Prins RA (1992) Characterization of an anaerobic fungus from Ilama faeces. J Gen Microbiol 138:2235–2241

    PubMed  Google Scholar 

  • Meers JL, Tempest DW, Brown CM (1970) Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP), an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64:187–194

    PubMed  Google Scholar 

  • Michel V, Fonty G, Millet L, Bonnemoy F, Gouet P (1993) In vitro study of the proteolytic activity of rumen anaerobic fungi. FEMS Microbiol Lett 110:5–10

    PubMed  Google Scholar 

  • Miller SM, Magasanik B (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism inSaccharomyces cerevisiae. J Bacteriol 172:4927–4935

    PubMed  Google Scholar 

  • Orpin CG (1975) Studies on the rumen flagellateNeocallimastix frontalis. J Gen Microbiol 91:249–262

    Google Scholar 

  • Orpin CG (1988) Nutrition and biochemistry of anaerobic Chitridiomycetes. Biosystems 21:365–370

    PubMed  Google Scholar 

  • Orpin CG, Greenwood Y (1986) Nutritional and gemination requirements of the rumen chytridiomyceteNeocallimastix patriciarum. Trans Br Mycol Soc 86:103–109

    Google Scholar 

  • Pateman JA (1969) Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. Biochem J 115:769–775

    PubMed  Google Scholar 

  • Sakurada M, Morgavi DP, Tomita Y, Onodera R (1994) Ureolytic activity of anaerobic rumen fungi,Piomyces sp. OTS3 andNeocallimastix sp. OTS4. An Sci Tech 65:950–955

    Google Scholar 

  • Sanwal BD, Lata M (1961) The occurrence of two different glutamic dehydrogenases inNeurospora. Can J Microbiol 7:319–328

    PubMed  Google Scholar 

  • Sanwal BD, Lata M (1962) Concurrent regulation of glutamic acid dehydrogenases ofNeurospora. Arch Biochem Biophys 97:582–588

    PubMed  Google Scholar 

  • Schwartz T, Kusnan MB, Fock HP (1991) The invovement of glutamate dehydrogenase and glutamine synthetase/glutamate synthase in ammonia assimilation by the basidiomycete fungusStropharia semiglobata. J Gen Microbiol 137:2253–2258

    Google Scholar 

  • Sleat R, Mah RA (1984) Quantitative method for colorimetric determination of formate in fermentation media. Appl Environ Microbiol 47:884–885

    Google Scholar 

  • Stewart GR, Mann AF, Fentem PA (1980) Enzymes of glutamate formation: glutamate dehydrogenase, glutamine synthetase and glutamate synthase. In Miflin BJ (ed) The biochemistry of plants, a comprehensive treatise, vol 5. Academic Press, New York, pp 271–327

    Google Scholar 

  • Teunissen MJ, Marras SAE, Op den Camp HJM, Vogels GD (1989) An improved method for the quantification of alcohols, volatile fatty acids, and lactate or 2,3-butanediol in biological samples. J Microbiol Methods 10:247–254

    Google Scholar 

  • Teunissen MJ, Op den Camp HJM, Huis in 't Veld JHJ, Vogels GD (1991a) Comparison of growth characteristics of anaerobic fungi from ruminant and non-ruminant herbivores during cultivation in a defined medium. Gen Microbiol 137:1401–1408

    Google Scholar 

  • Teunissen MJ, Smits TAM, Op den Camp HJM, Huis in 't Veld JHJ, Vogels GD (1991b) Fermentation of cellulose and production of cellulolytic and xylanolytic enzymes by anaerobic fungi from ruminant and non-ruminant herbivores. Arch Microbiol 156:290–296

    PubMed  Google Scholar 

  • Trinci APJ, Davies DR, Gull K, Lawrence MI, Nielsen BB, Rickers A, Theodorou MK (1994) Anaerobic fungi in herbivorous animals. Mycol Res 98:129–152

    Google Scholar 

  • Wallace RJ, Cotta MA (1988) Metabolism of nitrogen-containing compounds. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Applied Science, London, pp 217–249

    Google Scholar 

  • Wallace RJ, Joblin KN (1985) Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol Lett 29:19–25

    Google Scholar 

  • Wallace RJ, Munro CA (1986) Influence of the rumen anaerobic fungusNeocallimastix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on a solid substrate. Lett Appl Microbiol 3:23–26

    Google Scholar 

  • Wooton JF, Argenzio RA (1975) Nitrogen utilization within equine large intestine. Am J Physiol 229:1061–1067

    Google Scholar 

  • Younes H, Garleb K, Behr S, Rémésy C, Demigné C (1994) Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J Nutr 125:1010–1016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remberandt Dijkerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijkerman, R., Ledeboer, J., Verhappen, A.B.M. et al. The anaerobic fungusPiromyces sp. strain E2: nitrogen requirement and enzymes involved in primary nitrogen metabolism. Arch. Microbiol. 166, 399–404 (1996). https://doi.org/10.1007/BF01682986

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682986

Key words

Navigation