Skip to main content
Log in

The average stress tensor in systems with interacting particles

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The derivation of an expression of the macroscopic stress tensor in terms of microscopic variables in systems of finite interacting particles is discussed from different points of view.

It is shown that in volume averaging the introduction of a fictitious “interaction stress field”T I with special boundary conditions on the boundary of the averaging volume is needed. In ensemble averaging similar results are obtained by using a multipole expansion of the local stress and force fields. In the appropriate limiting cases, the obtained results are shown to be consistent with the results of kinetic theories of polymer solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

arbitrary field

D :

rate-of-strain tensor

f :

force density (per unit volume)

f i :

force acting on particlei

f ij :

force acting on particlei due to particlej

n :

unit normal

r :

radius vector with respect to an arbitrary origin

r i :

position of particlei

r ij :

r j r i

T :

stress tensor

t :

traction

v :

velocity field

V :

averaging volume

∂V :

boundary ofV

V i :

volume of particlei

v i :

arbitrary volume enclosing particlei

I :

interaction

H :

hydrodynamic

C :

contact

P :

particle

F :

fluid

\(\overline {( \ldots )} \) :

volume average

〈⋯〉:

ensemble average

\(\mathop {( \ldots )}\limits^ \sim \) :

macroscopic quantity

\(\vec \nabla or \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{\nabla } \) :

spatial differential operator (arrow denotes direction of the quantity to be operated on)

References

  1. Curtiss, C. F., R. B. Bird, O. Hassager, Adv. Chem. Phys.34, 31 (1976).

    Google Scholar 

  2. Irving, J. H., J. G. Kirkwood, J. Chem. Phys.18, 817 (1950).

    Article  CAS  Google Scholar 

  3. Bird, R. B., A. Hassager, R. C. Armstrong, C. F. Curtiss, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory, Wiley (New York 1977).

    Google Scholar 

  4. Curtiss, C. F., R. B. Bird, J. Chem. Phys.74 (I 2016, (II) 2026 (1981).

    Article  CAS  Google Scholar 

  5. Oevel, W., J. Schröter, J. Stat. Phys.25, 645 (1981).

    Article  Google Scholar 

  6. Landau, L. D., E. M. Lifshitz, Fluid Mechanics, pp. 76–79, Addison-Wesley (Mass. 1959).

    Google Scholar 

  7. Batchelor, G. K., J. Fluid Mech.41, 545 (1970).

    Article  Google Scholar 

  8. Brenner, H., Ann. Rev. Fluid Mech.2, 137 (1970).

    Article  Google Scholar 

  9. Russel, W. B., J. Colloid Interface Sci.55, 509 (1976).

    Article  Google Scholar 

  10. Batchelor, G. K., J. Fluid Mech.83, 97 (1977).

    Article  Google Scholar 

  11. Ball, K. C., P. Richmond, Phys. Chem. Liq.9, 99 (1980).

    CAS  Google Scholar 

  12. Buyevich, Yu. A., I. N. Shchelchkova, Prog. Aerospace Sci18, 121 (1978).

    Article  Google Scholar 

  13. Slattery, J. C., AIChE J.13, 8, 1066 (1967).

    Article  Google Scholar 

  14. Whitaker, S., Ind. Eng. Chem.61, 14 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jongschaap, R.J.J., Doeksen, D. The average stress tensor in systems with interacting particles. Rheol Acta 22, 4–11 (1983). https://doi.org/10.1007/BF01679824

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01679824

Key words

Navigation