Skip to main content
Log in

Aqueous films on silica in the presence of cationic surfactants

  • Original Contributions
  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

The existence of thick, stable water films on silica as described byDerjaguin and Kussakov (1939) has been confirmed in several laboratories. There is much evidence showing that their thicknesses can be substantially accounted for by electrical double layer theory. Such wetting films can be influenced by a third component. For example, they are thinned in the presence of inorganic electrolytes or rendered unstable (or metastable) by prior methylation of the silica surface.

Here, we consider the influence of alkyltrimethyl ammonium bromides on the stability of aqueous films on polished fused silica. In particular, the thickness and stability of aqueous films of C5, C8, C10 and C16 trimethyl ammonium bromides were studied over a range of surfactant concentrations. Contact angles of the TAB solutions on silica were also measured.

The concentration of each cationic surfactant proved important in determining film stability. In dilute solution (well below the bulk CMC) uniform films could be formed only below a critical concentration which varied with the chainlength of the surfactant. The longer the chainlength, the lower was the critical concentration. In this regime, the film thickness decreased significantly with increasing surfactant concentration. This decrease was greater than that found for a simple 1:1 electrolyte such as KCl at the same concentration. As the surfactant concentration increased towards the critical value, the uniform films became increasingly more prone to rupture.

Once the critical concentration of each surfactant was exceeded, uniform wetting films on silica could not be formed. The films ruptured immediately regardless of their initial diameter. In this regime, the contact angles, measured through the aqueous phase, increased with TAB concentration up to a maximum value which occurred near the CMC.

For C8, C10 and C16 trimethyl ammonium bromides, wetting films were again formed at concentrations above the CMC. At these concentrations, films were studied in detail only for the Cl6 surfactant. In this case, the wetting films were found to be somewhat thicker than free aqueous films of anionic surfactants formed at similar concentrations and hydrostatic pressures.

Zusammenfassung

Die Existenz dicker stabiler Wasserfrlme auf SiO2 (Derjaguin undKussakov (1939)) ist in verschiedenen Laboratorien bestätigt worden. Es gibt zahlreiche Hinweise, nach denen die Dicke durch die elektrische Doppelschichttheorie gedeutet werden kann. Solche benetzenden Filme können durch eine dritte Komponente beeinflußt werden; in Gegenwart anorganischer Elektrolyte werden sie dünner, durch vorhergehende Methylierung der SiO2-Oberfläche instabil oder metastabil.

In der Arbeit wird der Einfluß von Alkyltrimethylammoniumbromiden (C5, C8, C10 und C16 auf die Stabilität von Wasserfilmen auf polierten Quarzglasoberflächen untersucht. Die Konzentration der kationischen Tenside auf die Filmstabilität erwies sich als wichtig. In verdünnten Lösungen bilden sich einheitliche Filme nur unter einer kritischen Konzentration, die von der Kettenlänge des Tensids abhängt. Über der kritischen Konzentration bilden sich keine einheitlich benetzenden Filme; sie reißen sofort unabhängig von ihrem ursprünglichen Durchmesser. Es wird versucht, die Ergebnisse auf der Basis einer Doppelschichttheorie zu deuten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ter-Minassian-Saraga, L., Advan. Chem. Ser.43, 232 (1964).

    Google Scholar 

  2. Elton, G. A. H., Second Intern. Congr. Surface Activity3, 161 (London 1957).

    Google Scholar 

  3. Mingins, J., N. F. Owens, Private communications.

  4. Ruch, R. J., L. S. Bartell, J. Phys. Chem.64, 513 (1960).

    Google Scholar 

  5. Davies, J. T., E. K. Rideal,, Interfacial Phenomena, p. 436 (New York 1961).

  6. Ahrland, S., I. Grenthe, B. Noren, Acta. Chem. Scand.14, 1059 (1960).

    Google Scholar 

  7. Fuerstenau, D. W., J. Phys. Chem.60,981 (1956).

    Google Scholar 

  8. Somasundaren, P., T. W. Healey, D. W. Fuerstenau, J. Phys. Chem.68, 3562 (1964).

    Google Scholar 

  9. Ralston, J., J. A. Kitchener, JCIS50, 242 (1975).

    Google Scholar 

  10. Wark, I. W., J. Phys. Chem.40, 661 (1936).

    Google Scholar 

  11. Manev, E., A. Scheludko, D. Exerwa, Colloid & Polymer Sci.252, 586 (1974).

    Google Scholar 

  12. Blake, T. D., J. A. Kitchener, J. C. S. Faraday I,68, 1435 (1972).

    Google Scholar 

  13. Aronson, M. P., H. M. Princen, JCIS52, 345 (1975).

    Google Scholar 

  14. Bijsterbosch, B. H., JCIS47, 186 (1974).

    Google Scholar 

  15. Mukerjee, P., K. J. Mysels, Critical Micelle Concentrations of Aqueous Surfactant Systems, Nat. Stand. Ref. Data Ser., Nat. Bureau Stand. (Washington 1971).

  16. Blake, T. D., JCS Faraday I,48, 192 (1975).

    Google Scholar 

  17. Scheludko, A., E. Manev, Trans. Faraday Soc.64, 1123 (1968).

    Google Scholar 

  18. Scheludko, A., Private communication.

  19. Derjaguin, B. V., M. Kussakov, Acta Physiochim, USSR10, 153 (1939).

    Google Scholar 

  20. Platikanov, D., J. Phys. Chem.68, 3618 (1964).

    Google Scholar 

  21. Exerwa, D., I. Ivanov, A. Scheludko, Ann. Univ. Sofia Fac. Chem.56, 157 (1961).

    Google Scholar 

  22. Read, A. D., J. A. Kitchener, Soc. Chem. Ind. Monograph25, 300 (1967).

    Google Scholar 

  23. Read, A. D., J. A. Kitchener, JCIS30, 391 (1969).

    Google Scholar 

  24. Derjaguin, B. V., N. V. Churaev, JCIS49, 249 (1974).

    Google Scholar 

  25. Langmuir, I., J. Chem. Phys.6, 873 (1938).

    Google Scholar 

  26. Devereux, O. F., P. L. de Bruyn, Interactions of Plane-Parallel Double Layers (Cambridge, Mass. 1963).

  27. Derjaguin, B. V., L. D. Landau, Zh. Eksp. Teor. Fiz.15, 662 (1945).

    Google Scholar 

  28. Jones, G., L. A. Wood, J. Chem. Phys.13, 106 (1948).

    Google Scholar 

  29. Zorin, Z. M., N. V. Churaev, Colloid J. USSR30, 279 (1968).

    Google Scholar 

  30. Schulze, H. J., Proc. Intern. Conf. Colloid and Surface Science (Budapest) Vol. 1, 179 (1975).

    Google Scholar 

  31. Schulze, H. J. J., Colloid and Polymer Sci.,253, 730 (1975).

    Google Scholar 

  32. Sonntag, H., K. Strenge, Coagulation and Stability of Disperse Systems, p. 94 (New York 1972).

  33. Rubio, J., J. Goldfarb, JCIS36, 289 (1971).

    Google Scholar 

  34. Lyklema, J., K. J. Mysels, J. Am. Chem. Soc.87, 2539 (1965).

    Google Scholar 

  35. Scheludko, A., D. Exerova, Kolloid-Z.168, 24 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 figures and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronson, M.P., Princen, H.M. Aqueous films on silica in the presence of cationic surfactants. Colloid & Polymer Sci 256, 140–149 (1978). https://doi.org/10.1007/BF01679172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01679172

Keywords

Navigation