Skip to main content
Log in

Calcium-stimulated myofibrillar ATPase activity correlates with shortening velocity of muscle fibres inXenopus laevis

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The iliofibularis muscle ofXenopus laevis is reported to contain five types of fibres which have different force—velocity relationships. Ten fibres of each type were selected on the basis of succinate dehydrogenase activity, cross-sectional area and location in the muscle, in order to assess the validity of the fibre type classification.

Maximum calcium-stimulated myofibrillar ATPase activity (V max) and apparent Michaelis constant (K m) for ATP were determined for these 50 fibres from serial sections. The values obtained varied according to the type of fibre. Type 1 had the highest and type 5 the lowest values forK m andV max.

In a separate experiment, single freeze-dried fibres were used to determine the relationship between their ATP content and apparentK m for ATP. There was a tendency for high ATP concentrations in fibres with highK m values.

When myofibrillar ATPase activity was related to the maximum velocity of shortening of the five fibre types, a significant correlation was found. It is concluded that calcium-stimulated myofibrillar ATPase histochemistry allows an estimate of the maximum shortening velocity of muscle fibres fromXenopus laevis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ARIANO, M. A., ARMSTRONG, R. B. & EDGERTON, V. R. (1973) Hindlimb muscle fibre populations of five mammals.J. Histochem. Cytochem. 21, 51–5.

    Google Scholar 

  • BÁRÁNY, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening.J. Gen. Physiol. 50, 197–218.

    Google Scholar 

  • BROOKE, M. H. & KAISER, K. K. (1970) Three ‘myosin adenosine triphosphatase’ systems: the nature of their pH lability and sulphydryl dependence.J. Histochem. Cytochem. 18, 670–2.

    Google Scholar 

  • BURKE, R. E. (1978) Motor units: physiological/histochemical profiles, neuronal connectivity and functional specialization.Am. Zool. 18, 127–34.

    Google Scholar 

  • CLOSE, R. I. (1972) Dynamic properties of mammalian skeletal muscles.Physiol. Rev. 52, 129–97.

    Google Scholar 

  • CORNISH-BOWDEN, A., PORTER, W. R. & TRAGER, W. F. (1978) Evaluation of distribution-free confidence limits for enzyme kinetic parameters.J. Theoret. Biol. 74, 163–75.

    Google Scholar 

  • EDSTRÖM, L., HULTMAN, E., SAHLIN, K. & SJOHOLM, H. (1982) The contents of high-energy phosphates in different fibre types in skeletal muscles from rat, guineapig, and man.J. Physiol. (Lond.) 332, 47–58.

    Google Scholar 

  • EISENTHAL, R. & CORNISH-BOWDEN, A. (1974) The direct linear plot. A new graphical method for estimating enzyme kinetic parameters.Biochem. J. 139, 715–20.

    Google Scholar 

  • FERENCZI, M. A., GOLDMAN, Y. E. & SIMMONS, R. M. (1984) The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres fromRana temporaria.J. Physiol. (Lond.) 350, 519–43.

    Google Scholar 

  • GLYN, H. & SLEEP, J. (1985) Dependence of adenosine triphosphatase activity of rabbit psoas muscle fibres and myofibrils on substrate concentration.J. Physiol. (Lond.) 365, 259–76.

    Google Scholar 

  • HILL, A. V. (1965)Trails and Trials in Physiology, p. 245. London: Edward Arnold.

    Google Scholar 

  • HINTZ, C. S., CHI, M. M.-Y., FELL, R. D., IVY, J. L., KAISER, K. K., LOWRY, C. V. & LOWRY, O. H. (1982) Metabolite changes in individual rat muscle fibres during stimulation.Am. J. Physiol. 242, C218–28.

    Google Scholar 

  • JUENGLING, E. & KAMMERMEIER, H. (1980) Rapid assay of adenine nucleotides of creatine compounds in extracts of cardiac tissue by ion-paired reverse-phase high-performance liquid chromatography.Anal. Biochem. 102, 358–61.

    Google Scholar 

  • KAHN, M. A. (1976) Histochemical characteristics of vertebrate striated muscle: a review.Prof. Histochem. Cytochem. 8 (4), 1–48.

    Google Scholar 

  • LÄNNERGREN, J. (1978) The force-velocity relation of isolated twitch and slow muscle fibres ofXenopus laevis.J. Physiol. (Lond.) 283, 501–21.

    Google Scholar 

  • LÄNNERGREN, J. (1979) An intermediate type of muscle fibre inXenopus laevis.Nature (Lond.) 279, 254–6.

    Google Scholar 

  • LÄNNERGREN, J. & SMITH, R. S. (1966) Types of muscle fibres in toad skeletal muscle.Acta Physiol. Scand. 68, 263–74.

    Google Scholar 

  • LÄNNERGREN, J. & HOH, J. F. Y. (1984) Myosin isoenzymes in single muscle fibres ofXenopus laevis: analysis of five different functional types.Proc. R. Soc. Lond. B222, 401–8.

    Google Scholar 

  • LÄNNERGREN, J., LINDBLOM, P. & JOHANSSON, B. (1982) Contractile properties of two varieties of twitch muscle fibres inXenopus laevis.Acta. Physiol. Scand. 114, 523–35.

    Google Scholar 

  • MABUCHI, K. & SRÉTER, F. A. (1980) Actomyosin ATPase. I. Quantitative measurement of activity in cryostat sections.Muscle Nerve 3, 227–32.

    Google Scholar 

  • MEIJER, A. E. F. H. (1970) Histochemical method for the demonstration of myosin adenosine triphosphatase in muscle tissues.Histochemie 22, 51–8.

    Google Scholar 

  • NASSAR-GENTINA, V., PASSONNEAU, J. V., VERGARA, J. L. & RAPOPORT, S. I. (1978) Metabolic correlates of fatigue and of recovery in single frog muscle fibres.J. Gen. Physiol. 72, 593–606.

    Google Scholar 

  • POOL, C. W., DIEGENBACH, P. C. & SCHOLTEN, G. (1979) Quantitative succinate dehydrogenase histochemistry. I. A methodological study on mammalian and fish muscle.Histochemistry 64, 251–62.

    Google Scholar 

  • ROWLERSON, A. & SPURWAY, N. C. (1985) How many fibre types in amphibian muscles? A comparison ofRana andXenopus. J. Physiol. (Lond.) 358, 78P.

    Google Scholar 

  • SALTIN, B. & GOLLNICK, P. D. (1983) Skeletal muscle adaptability: significance for metabolism and performance. InHandbook of Physiology: Skeletal Muscle (edited by PEACHEY, L. D., ADRAIN, R. H. and GEIGER, S. R.), pp. 555–631. Baltimore: Williams & Wilkie.

    Google Scholar 

  • SIEGEL, S. (1956)Non-parametric Statistics for the Behavioral Sciences. pp. 312. New York: McGraw-Hill.

    Google Scholar 

  • SMITH, R. S. & OVALLE, W. K. (1973) Varieties of fast and slow extrafusal fibres in amphibian hind limb muscles.J. Anat. (Lond.) 116, 1–24.

    Google Scholar 

  • SPURWAY, N. C. (1981) Objective characterization of cells in terms of microscopical parameters: an example from muscle histochemistry.Histochem. J. 13, 269–317.

    Google Scholar 

  • VAN DER LAARSE, W. J., DIEGENBACH, P. C. & MASLAM, S. (1984) Quantitative histochemistry of three mouse hindlimb muscles: the relationship between calcium-stimulated myofibrillar ATPase and succinate dehydrogenase activities.Histochem. J. 16, 529–41.

    Google Scholar 

  • WISHART, D. (1975)Clustan Manual University College, London: Computer Centre.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Laarse, W.J., Diegenbach, P.C. & Hemminga, M.A. Calcium-stimulated myofibrillar ATPase activity correlates with shortening velocity of muscle fibres inXenopus laevis . Histochem J 18, 487–496 (1986). https://doi.org/10.1007/BF01675616

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01675616

Keywords

Navigation