Skip to main content
Log in

Dislocation dynamics and plastic shear in crystalline solids communication 1

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

Conclusions

  1. 1.

    Generalization of the experimental data on mobility of dislocations and their capacity to multiply in the process of plastic deformation permits us to describe the basic macroscopic phenomena of plastic flow of crystalline solids, and moreover a good quantitative correspondence of calculation curves of the temperature dependence of fluid-flow stresses with experimental curves has been observed.

    For crystals distinguished by a high sensitivity of the dislocation velocity to the effective stress, at low tension rates the differences between the magnitudes of the intensity of dislocation multiplication at different low temperatures apparently does not lead to any significant distortion of the lower limit of the yield point.

  2. 2.

    The differential equation found for the mechanical state of the crystal allows us to obtain three special solutions, corresponding to uniaxial deformation with constant velocity, creep, and stress relaxation. The indicated solutions are numerically integrated. In each case series of corresponding curves are obtained.

  3. 3.

    In order to explain the properties of the initial stages of plastic flow within the framework of the calculation model, it is not necessary to introduce concepts of a process of simultaneous freeing of many dislocations or of their breaking away from the atmosphere of impurity atoms. The initial stages of plastic flow can be described by the basic physical parameters characterizing the external conditions and properties of the material in dependence on time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. W. D. Johnston and J. J. Gilman, J. Appl. Phys.,30, No. 2, 129 (1959).

    Google Scholar 

  2. G. T. Hahn, Acta. Metallurg.,10, No. 8, 727 (1962).

    Google Scholar 

  3. W. D. Johnston, J. Appl. Phys.,33, No. 9 (1962).

  4. V. G. Govorkov, V. L. Indenbom, V. S. Papkov, and V. R. Regel', in: The Mechanism of Metal Failure [in Russian], Naukova Dumka, Kiev (1966).

    Google Scholar 

  5. Yu. V. Mil'man and V. I. Trefilov, in: The Mechanism of Metal Failure [in Russian], Naukova Dumka, Kiev (1966).

    Google Scholar 

  6. P. P. Gillis and J. J. Gilman, J. Appl. Phys.,36, No. 11, 3370–3386 (1965).

    Google Scholar 

  7. A. H. Cottrell, in: Structure and Mechanical Properties of Metals [Russian translation], Metallurgizdat, Moscow (1967), p. 210.

    Google Scholar 

  8. A. H. Cottrell, Dislocations and Plastic Flow in Crystals [Russian translation], Metallurgizdat, Moscow (1958).

    Google Scholar 

  9. A. Chandhuri, J. Patel, and L. Rubin, J. Appl. Phys.,33, No. 9, 2736 (1962).

    Google Scholar 

  10. M. N. Cabler, Phys. Rev.,131, No. 54 (1963).

    Google Scholar 

  11. T. Suzuki and H. Kojima, Acta Metallurg.,14, No. 8, 913 (1966).

    Google Scholar 

  12. D. F. Stein and J. R. Low, J. Appl. Phys.,31, No. 2, 362 (1960).

    Google Scholar 

  13. J. S. Erickson, J. Appl. Phys.,33, No. 8 (1962).

  14. R. Jaffe and G. Hahn, in: Structure and Mechanical Properties of Metals [Russian translation], Metallurgiya, Moscow (1967).

    Google Scholar 

  15. D. P. Pope, T. Vreeland Jr., and D. S. Wood, J. Appl. Phys.,38, No. 10, 4011 (1967).

    Google Scholar 

  16. W. F. Greenman, T. Vreeland Jr., and D. S. Wood, J. Appl. Phys.,38, No. 9, 3595 (1967).

    Google Scholar 

  17. R. W. Ronde and C. H. Pitt, J. Appl. Phys.,38, No. 2, 876 (1967).

    Google Scholar 

  18. E. Yu. Gutmanas, É. M. Nadgornyi, and A. V. Stepanov, Fizika Tverd. Tela,5, No. 2, 1021 (1963).

    Google Scholar 

  19. V. N. Rozhanskii, V. M. Stepanova, E. V. Parvova, and A. A. Predvoditelev, Fizika Tverd. Tela,5, No. 2, 634 (1963).

    Google Scholar 

  20. V. B. Pariiskii, S. V. Lubenets, and V. I. Startsev, Fizika Tverd. Tela,8, No. 4, 1227 (1966).

    Google Scholar 

  21. J. E. Hanafee and S. V. Radcliffe, J. Appl. Phys.,38, No. 11, 4284 (1967).

    Google Scholar 

  22. J. E. Dorn, J. E. Mitchell, and F. Hauser, Experimental Mechanics,5, No. 11, 3 (1965).

    Google Scholar 

  23. F. F. Lavren'ev, O. P. Salita, and V. I. Startsev, in: The Mechanism of Metal Failure [in Russian], Naukova Dumka, Kiev (1966), p. 27.

    Google Scholar 

  24. Ya. I. Frenkel' and T. A. Kontorova, Zh. Éksp. Teor. Fiz., No. 8, 89 (1938).

    Google Scholar 

  25. J. D. Echelby, Proc. Phys. Soc.,A62, 307 (1949).

    Google Scholar 

  26. J. Gilman, UFN,80, No. 3, 455 (1963).

    Google Scholar 

  27. J. J. Gilman, J. Appl. Phys.,36, No. 10, 3195 (1965).

    Google Scholar 

  28. Van Buren, Defects in Crystals [Russian translation], IL, Moscow (1963).

    Google Scholar 

  29. É. M. Nadgornyi and B. I. Smirnov, Fiz. Tverd. Tela, No. 8, 2048 (1966).

    Google Scholar 

  30. E. Schmid and W. Boas, Kristallplastizitat, Springer, Berlin (1935).

    Google Scholar 

  31. Y. Nakada and A. S. Keh, Acta Metallurg.,14, No. 8, 961 (1966).

    Google Scholar 

  32. J. Wirtman and J. R. Wirtman, Physical Metal Science [Russian translation], Vol. 3, Mir, Moscow (1968), p. 155.

    Google Scholar 

Download references

Authors

Additional information

Institute of Strength of Materials, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Problemy Prochnosti, No. 1, pp. 71–77, July, 1969.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasovski, A.Y. Dislocation dynamics and plastic shear in crystalline solids communication 1. Strength Mater 1, 67–73 (1969). https://doi.org/10.1007/BF01675439

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01675439

Keywords

Navigation