Skip to main content
Log in

Relationships between cell surface protease and acid phosphatase activities ofLeishmania promastigote

  • Research Articles
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A correlation between the ratio of the cell surface protease activity to phosphatase activity and the complexity of the pattern of cell surface exposed polypeptides ofLeishmania promastigotes was demonstrated for various strains grown under similar conditions.

The ratio of the cell surface protease activity to acid phosphatase activity was high forL. major andL.b. panamensis and it correlates with the expression of a single polypeptide of 63 KDa on their cell surface. Intermediate and lower ratios of these enzymatic activites relate with more complex radio-iodinated patterns: two main bands inL.b. guyanensis (70 and 58 KDa) andL.b. braziliensis (72 and 60 KDa) and three main bands 65, 50, 27 KDa in allL.m. mexicana strains tested. Evidence is presented that the acid phosphatase located on theL.m. mexicana cell surface is not an artifact due to a secondary absorption of the secreted acid phosphatase from the culture medium.

These results confirm theLeishmania antigen cell surface heterogeneity. The implications on the biology ofLeishmania and the clinical manifestation of leishmaniasis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hernandez AG, Arguello C, Ayesta C, Dagger F, Infante RB, Stojanovic D, Dawjdowicz K, Riggione F & La Riva G (1981) In: The Biochemistry of Parasites (Slutzky, GM, ed.), pp. 47–65, Pergamon Press, Oxford

    Google Scholar 

  2. Chang KP (1983) Int. Rev. Cytol. (Suppl) 14: 267–302

    Google Scholar 

  3. Handman E, Mc Conville MJ & Goding JW (1987) Parasitol. Today. 8: 181–185

    Google Scholar 

  4. Talamas-Rohana P, Wright SD, Lemartz MR, Russell DG (1990) J. Immunol. 144: 4817–4824

    Google Scholar 

  5. Colomer-Gould V, Quintao LG, Keithly J, Nogueira N (1985) J. Exp. Med. 162: 902–916

    Google Scholar 

  6. Etges RJ, Bouvier J, Hoffman R & Bordier C (1985) Mol. Biochem. Parasitol. 14: 141–149.

    Google Scholar 

  7. Bouvier J, Etges RJ & Bordier C (1987) Mol. Biochem. Parasitol. 24: 73–79

    Google Scholar 

  8. Button LL & Mc Master WR (1988) J. Exp. Med. 167: 724–729

    Google Scholar 

  9. Kutner S, Pellerin P & Breniere SF (1990) Parasitol. Res. 76: 185–191

    Google Scholar 

  10. Etges RJ, Bouvier J & Bordier C (1986) J. Biol. Chem. 261: 9098–9101

    Google Scholar 

  11. Etges RJ, Bouvier J & Bordier C (1986) EMBO. J. 5: 597–602

    Google Scholar 

  12. Gottlieb M & Dwyer DM (1981) Exp. Parasitol 52: 117–128

    Google Scholar 

  13. Glew RH, Czuezman MS, Diven WF, Berens RL, Pope MT & Katsoulis DE (1982) Comp. Biochem. Physiol. 72B: 581–590

    Google Scholar 

  14. Remaley AT, Das S, Campbell PI, La Rocca GM, Pope MT & Glew R (1985) J. Biol. Chem. 260: 880–886

    Google Scholar 

  15. Coombs GH, Hassan HF, Lockwood BC, Mallisow DJ, North MJ, Alunda JM & Tetley L (1987) In Host-Parasite cellular and Molecular Interactions in Protozoal Infections (Chang KP and Snary D, eds). Nato ASI Series H, Vol 11, pp 189–195, Springer-Verlag, Heidelberg

    Google Scholar 

  16. Hernandez AG, Payares G, Misle A & Dagger F (1989) Parasitol. Res. 75: 583–588

    Google Scholar 

  17. Manenti S, Kutner S, Rascon A, Hernandez AG (1990). Parasitol. Res. 76: 301–305

    Google Scholar 

  18. Menz B, Winter G, Ilg T, Lottspeich F & Overath P (1991). Mol. Biochem. Parasitol. 47: 101–108

    Google Scholar 

  19. Bouvier J, Etges RJ & Bordier C. (1985) J. Biol Chem 260: 15504–15509

    Google Scholar 

  20. Gardiner PR, Jaffe CL & Dwyer DM (1984) Infect. Immun. 43: 637–643

    Google Scholar 

  21. Kweider M, Lamesre JP, Darey F, Kusnierz JP, Capron P & Santoro F (1987) J. Immunol. 138: 299–305

    Google Scholar 

  22. Russell DG (1987) Eur. J. Biochem. 164: 213–221

    Google Scholar 

  23. Ramirez JL & Guevara P (1987) Mol. Biochem. Parasitol. 22: 177–183

    Google Scholar 

  24. Neal RA (1964) Ann. Trop. Parasitol. 58: 420–430

    Google Scholar 

  25. Markwell MK & Fox GF (1978) Biochemistry 17: 4807–4817

    Google Scholar 

  26. Hernandez AG, Misle A, Urdaneta J & Dagger F (1987) Mol. Biol. Rep. 12: 103–110

    Google Scholar 

  27. Laemmli UK (1970) Nature 227: 680–685

    Google Scholar 

  28. Adamson RE, Hernandez AG, Chance ML, Bonafante-Garrido R & Maingon RDC (1992). Trans. Roy. Soc. Trop. Med. (In press).

  29. Button LL, Russell DG, Klein HL, Medina-Acosta E, Karess RE & Mc Master WR (1989) Mol. Biochem. Parasitol. 32: 271–284

    Google Scholar 

  30. Pimenta PFP & De Souza W (1986) J. Submicros. Citol 18: 127–132

    Google Scholar 

  31. Lovelace KJ & Dwyer DM (1986) Am. J. Trop. Med. Hyg. 35: 1121–1128

    Google Scholar 

  32. Doyle RJ & Sonnenfeld EM (1989) Int. Rev. Cytol. 118: 33–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez, A.G., Rascon, A., Kutner, S. et al. Relationships between cell surface protease and acid phosphatase activities ofLeishmania promastigote. Mol Biol Rep 18, 189–195 (1993). https://doi.org/10.1007/BF01674430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01674430

Key words

Navigation