Skip to main content
Log in

DNA-protein interactions and spatial organization of DNA

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Grunstein M (1990) Annu. Rev. Cell. Biol. 6: 643–678

    Google Scholar 

  2. Travers AA & Klug A (1990) In: Cozzarelly NR and Wang JC (Ed) DNA topology and its biological effects (pp 57–106) Cold Spring Harbor Lab. Press, USA

    Google Scholar 

  3. Hochshild A (1990) In: Cozzarelly NR and Wang JC (Ed) DNA topology and its biological efects (pp 107–138) Cold Spring Harbor Lab. Press, USA

    Google Scholar 

  4. Cozzarelli NR, Boles TC & White JH (1990) In: Cozzarelly NR and Wang JC (Ed) DNA topology and its biological effects (pp 139–184) Cold Spring Harbor Lab. Press, USA

    Google Scholar 

  5. Wolffe AP (1991) Trends in Cell. Biol. 1: 61–66.

    Google Scholar 

  6. Kornberg RD & Lorch Y (1991) Cell 67: 833–836

    Google Scholar 

  7. Morse RH (1992) Trends in Biochem. Sci. 17: 23–26

    Google Scholar 

  8. Dunn TM, Hahn S, Ogden S & Schleif RF (1984) Proc. Natl. Acad. Sci. USA 81: 5017–5020

    Google Scholar 

  9. Hahn S, Hendrickson W & Schleif R (1986) J. Mol. Biol. 188: 355–367

    Google Scholar 

  10. Martin K, Huo L & Schleif RF (1986) Proc. Natl. Acad. Sci. USA 83: 3654–3658

    Google Scholar 

  11. Eismann E, Wilcken-Bergmann BV & Muller-Hill B (1987) J. Mol. Biol. 195: 949–952

    Google Scholar 

  12. Kramer H, Niemoller M, Amouyal M, Revet B, von Wilcken-Bergmann B & Muller-Hill B (1987) EMBO J. 6: 1481–1491

    Google Scholar 

  13. Miron A, Mukherjee S & Bastia D (1992) EMBO J. 11: 1205–1216

    Google Scholar 

  14. Majumdar A & Adhya S (1984) Proc. Natl. Acad. Sci. USA 81: 6100–6104

    Google Scholar 

  15. Dandanell G, Valentin-Hansen P, Larsen JEL & Hammer K (1987) Nature 325: 823–826

    Google Scholar 

  16. Dandanell G & Hammer K (1985) EMBO J. 4: 3333–3338

    Google Scholar 

  17. Greenstein D & Horiuchi K (1987) J. Mol. Biol. 197: 157–174.

    Google Scholar 

  18. Sun X-H, Lis JT & Wu R (1988) Genes Dev. 2: 743–753

    Google Scholar 

  19. Takahashi K, Vigneron M, Matthes H, Wildeman A, Zenke M & Chambon P (1986) Nature 319: 121–126

    Google Scholar 

  20. Schatz C & Chatton B (1990) Nucleic Acids Res. 18: 421–427

    Google Scholar 

  21. Khalili K, Khoury G & Brady J (1986) J. Virol. 60: 935–942

    Google Scholar 

  22. Daley L, Caddle MS, Heintz N & Heintz NH (1990) Mol. Cell. Biol. 10: 6225–6235

    Google Scholar 

  23. Held P, Dailey L, Mastrangelo L, Hough P, Caddle M, Heintz M & Heintz NH (1991) In: Abstracts of 1991 meeting on Eukaryotic DNA Replication. Cold Spring Harbor, NY. p. 70

    Google Scholar 

  24. Gustafsson C, Elias P & Stow N (1991) In: Abstracts of 1991 meeting on Eukaryotic DNA Replication. Cold Spring Harbor, NY. p. 67

    Google Scholar 

  25. Jantzen HM, Strahle U, Gloss B, Stewart F, Schmid W, Boshart M, Miksicek R & Schutz G (1987) Cell 49: 29–38

    Google Scholar 

  26. Johnson PF, Landschulz WH, Graves BJ & McKnight SL (1987) Genes Dev. 1: 133–146

    Google Scholar 

  27. Tooze J (Ed.) (1980) DNA Tumor Viruses. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  28. Takahashi K, Vigneron M, Matthes M, Wildeman A, Zenke M & Chambon P (1986) Nature 319: 121–126

    Google Scholar 

  29. Schatz C & Chatton B (1990) Nucl. Acids Res. 18: 421–427

    Google Scholar 

  30. Anderson JE, Ptashne M & Harrison SC (1987) Nature 326: 846–852

    Google Scholar 

  31. Koudelka GB (1991) Nucleic Acids Res. 19: 4115–4119

    Google Scholar 

  32. Deb S, DeLucia AL, Koff A, Tsui S & Tegtmeyer P (1986) Mol. Cell. Biol. 6: 4578–4584

    Google Scholar 

  33. Wu H-M & Crothers DM (1984) Nature 308: 509–513

    Google Scholar 

  34. Zahn K & Blattner FR (1987) Science 236: 416–422

    Google Scholar 

  35. Rojo F & Salas M (1991) EMBO J. 10: 3429–3438

    Google Scholar 

  36. Wolberger C, Dong Y, Ptashne M & Harrison SC (1988) Nature 335: 789–795

    Google Scholar 

  37. Hogan ME & Austin RH (1987) Nature 329: 263–266

    Google Scholar 

  38. Koudelka GB, Harrison SC & Ptashne M (1987) Nature 326: 886–888

    Google Scholar 

  39. Gille H, Egan JB, Roth A & Messer W (1991) Nucleic Acids Res. 19: 4167–4172

    Google Scholar 

  40. Caddle MS, Dailey L & Heintz NH (1990) Mol. Cell. Biol. 10: 6236–6243

    Google Scholar 

  41. Krajewski WA & Razin SV (1992) Mol. Gen. Genet. 235: 381–388

    Google Scholar 

  42. Tobin JF & Schleif RF (1990) J. Mol. Biol. 211: 75–89

    Google Scholar 

  43. Zwieb C, Kim J & Adhya S (1989) Genes Dev. 3: 606–611

    Google Scholar 

  44. Drlica K (1984) Microbiol. Rev. 48: 273–289

    Google Scholar 

  45. Cook PR (1991) Cell 66: 627–635

    Google Scholar 

  46. Razin SV & Vassetzky YS (1992) Cell. Biol. Int. Rep. 16: 697–708

    Google Scholar 

  47. Pruss GJ & Drlika K (1985) J. Bacteriol. 164: 947–949

    Google Scholar 

  48. Menzel R & Gellert M (1987) Proc. Natl. Acad. Sci. USA 84: 4185–4189

    Google Scholar 

  49. Krajewski WA & Luchnik AN (1991) Mol. Gen. Genet. 230: 442–448

    Google Scholar 

  50. DiGate RJ & Marians KJ (1988) J. Biol. Chem. 263: 13366–13373

    Google Scholar 

  51. Wang JC (1985) Ann. Rev. Biochem. 54: 665–697

    Google Scholar 

  52. Wang JC (1974) J. Mol. Biol. 87: 797–816

    Google Scholar 

  53. Wallis JW, Chrebet G, Brodsky G, Rolfe M & Rothstein R (1989) Cell 58: 409–419

    Google Scholar 

  54. Hirose S & Suzuki Y (1988) Proc. Natl. Acad. Sci. USA 85: 718–772

    Google Scholar 

  55. Kmiec EB & Worcel A (1985) Cell 41: 945–953

    Google Scholar 

  56. Liu LF & Wang JC (1987) Proc. Natl. Acad. Sci. USA 84: 7024–7027

    Google Scholar 

  57. Lee M-S & Garrard WT (1991) EMBO J. 10: 607–615

    Google Scholar 

  58. Norton VG, Imai BS, Yau P & Bradbury EM (1989) Cell 57: 449–457

    Google Scholar 

  59. Igo-Kemenes T, Horz W & Zachau HG (1982) Ann. Rev. Biochem. 51: 89–121

    Google Scholar 

  60. Morse RH & Simpson RT (1988) Cell 54: 285–287

    Google Scholar 

  61. Covault J & Chalkley R (1980) J. Biol. Chem. 255: 9110–9116

    Google Scholar 

  62. Covault J, Sealy L, Schnell R, Shires A & Chalkley R (1982) J. Biol. Chem. 257: 5809–5815

    Google Scholar 

  63. Covault J, Perry M & Chalkley R (1982) J. Biol. Chem. 257: 13433–13440

    Google Scholar 

  64. Cousens LS, Gallwitz D & Alberts BM (1979) J. Biol. Chem. 254: 1716–1723

    Google Scholar 

  65. Esposito F & Sinden RR (1987) Nucleic Acids Res. 15: 5105–5124

    Google Scholar 

  66. Ambrose C, McLaughlin R & Bina M (1987) Nucleic Acids Res. 15: 3703–3721

    Google Scholar 

  67. Lutter LC (1989) Proc. Natl. Acad. Sci. USA 86: 8712–8716

    Google Scholar 

  68. Morse RH & Cantor CR (1985) Proc. Natl. Acad. Sci. USA 82: 4653–4657

    Google Scholar 

  69. Morse RH & Cantor CR (1986) Nucleic Acids Res. 14: 3293–3310

    Google Scholar 

  70. Morse RH, Pederson DS, Dean A & Simpson RT (1987) Nucleic Acids Res. 15: 10311–10330

    Google Scholar 

  71. Saavedra RA & Huberman JA (1986) Cell 45: 65–70

    Google Scholar 

  72. Smirnov IV, Krylov DYu & Makarov VL (1989) Abstract H-11 in Molecular Organization of Biological Structures. Moscow. p. 287

  73. Richmond TJ, Finch JT, Rushton B, Rhodes D & Klug A (1984) Nature 311: 532–537

    Google Scholar 

  74. Saavedra RA (1990) Bio-Essays 12: 125–128

    Google Scholar 

  75. Krajewski WA, Luchnik AN (1991) Mol. Gen. Genet. 231: 17–21

    Google Scholar 

  76. Choder M, Bratosin S & Aloni Y (1984) EMBO J. 3: 2929–2936

    Google Scholar 

  77. Llopis R, Perrin F, Bellard F & Gariglio P (1981) J. Virol. 38: 82–89

    Google Scholar 

  78. Lopis R & Stark GR (1982) J. Virol. 44: 864–870

    Google Scholar 

  79. Lopis R & Stark GR (1981) J. Virol. 38: 91–103

    Google Scholar 

  80. Allegra P, Sterner R, Clayton DF & Allfrey VG (1987) J. Mol. Biol. 196: 379–388

    Google Scholar 

  81. Chen TA, Sterner R, Cozzolino A & Alfrey VG (1990) J. Mol. Biol. 212: 481–493

    Google Scholar 

  82. Sterner R, Boffa LC, Chen TA & Allfrey VG (1987) Nucleic Acids Res. 15: 4375–4387

    Google Scholar 

  83. Bavykin SG, Usachenko SI, Zalensky AO & Mirzabekov AD (1990) J. Mol. Biol. 212: 495–511

    Google Scholar 

  84. Nacheva GA, Guschin DY, Preobrazhenscaya OV, Karpov VL, Ebralidse KK & Mirzabekov AD (1989) Cell 1989 58: 27–36

    Google Scholar 

  85. Ryoji M & Worcel A (1984) Cell 37: 21–32

    Google Scholar 

  86. Ryoji M & Worcel A (1985) Cell 40: 923–932

    Google Scholar 

  87. Weintraub H (1985) Cell 42: 705–711

    Google Scholar 

  88. Glikin GC, Ruberti I & Worcel A (1984) Cell 37: 33–41

    Google Scholar 

  89. Esposito F & Sinden RR (1988) In: Oxford Surveys on Eukaryotic Genes (MacClean N, ed). Oxford University Press pp 1–50

  90. Choder M & Aloni Y (1988) Nucleic Acids Res. 16: 895–905

    Google Scholar 

  91. Petryniak B & Lutter LC (1987) Cell 48: 289–295

    Google Scholar 

  92. Luchnik AN, Bakayev VV, Zbarsky IB & Georgiev GP (1982) EMBO J. 1982. 1: 1353–1358

    Google Scholar 

  93. Clark DJ & Wolffe AP (1991) EMBO J. 10: 3419–3428

    Google Scholar 

  94. Alonso WR, Ferris RC, Zhang DE & Nelson DA (1987) Nucleic Acids Res. 15: 9325–9337

    Google Scholar 

  95. Bode J (1984) Arch. Biochem. Biophys. 228: 364–372

    Google Scholar 

  96. Hebbes TR, Thorne AW & Crane-Robinson C (1988) EMBO J. 7: 1395–1402

    Google Scholar 

  97. Nelson D, Perry ME & Chalkley R (1979) Nucleic Acids Res. 6: 561–574

    Google Scholar 

  98. Nelson D, Perry ME & Chalkley R (1978) Biochem. Biophys. Res. Comm. 82: 356–363

    Google Scholar 

  99. Bode J, Gomez-Lira MM & Schroter H (1983) European J. Biochem. 130: 437–445

    Google Scholar 

  100. Oliva R, Bazett-Jones DP, Locklear L & Dixon GH (1990) Nucleic Acids Res. 18: 2739–2747

    Google Scholar 

  101. Adler AJ, Fasman GD, Wangh LJ & Allfrey VG (1974) J. Biol. Chem. 249: 2911–2914

    Google Scholar 

  102. Pospelov VA, Svetlikova SB & Vorob'ev VI (1979) FEBS Letters 99: 123–128

    Google Scholar 

  103. Ausio J & van Holde KE (1986) Biochemistry 25: 1421–1428

    Google Scholar 

  104. Ausio J, Dong F & van Holde KE (1989) J. Mol. Biol. 206: 451–463

    Google Scholar 

  105. Brown JW & Anderson JA (1986) J. Biol. Chem. 261: 1349–1354

    Google Scholar 

  106. Dorbic T & Wittig B (1987) EMBO J. 6: 2393–2399

    Google Scholar 

  107. Graziano V & Ramakrishnan V (1990) J. Mol. Biol. 214: 897–910

    Google Scholar 

  108. Mathew CGP, Goodwin GH & Johns EW (1979) Nucleic Acids Res. 6: 167–179

    Google Scholar 

  109. Mezquita J, Chiva M, Vidal S & Mezquita C (1982) Nucleic Acids Res. 10: 1781–1797

    Google Scholar 

  110. DePamphilis M, Wiekowski M, Majumder S, Miranda M, Melin F & Blangy D (1991) Abstracts of European Developmental Biology Congress (Jerusalem Israel) p. 22

  111. Kleinschmidt AM & Martinson HG J. Biol. Chem. 259: 497–503

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajewski, W.A., Razin, S.V. DNA-protein interactions and spatial organization of DNA. Mol Biol Rep 18, 167–175 (1993). https://doi.org/10.1007/BF01674427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01674427

Key words

Navigation