Skip to main content
Log in

The influence of microstructure on the isothermal and cyclic-oxidation behavior of Ti-48Al-2Cr at 800°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The isothermal and cyclic-oxidation behavior of the intermetallic Ti48Al-2Cr (at. %) alloy were studied at 800°C in air. Emphasis was placed on the effect of microstructures, in a range relevant for practical applications; i.e., duplex, near gamma, nearly lamellar, and fully lamellar; obtained by various heat treatments. The oxidation kinetics of the intermetallic alloy showed initially the formation of a relatively protective oxide scale. After an exposure time of about 10 hr the oxidation rate increased significantly, due to a Loss of protectivity of the oxide scale. The growth rate of the oxide scale, as well as its composition, structure and morphology showed no major relation to the microstructure of the base material. The oxidation of Ti-48Al-2Cr in air, initially resulted in the formation of α-Al2O3, TiO2 (rutile), Ti2AlN, and TiN. After Longer exposure times, the mixed-oxide scale with an alumina-rich Layer at the outside was overgrown by the fast-growing TiO2, responsible for the rapid kinetics. Using18O/15N experiments some mechanistic aspects were discussed in relation to the existence of a nitrogen-rich Layer near the scale/alloy interface. Thermal-cyclic-oxidation experiments up to 3000 1-hr cycles showed that spallation of the oxide scale initiated after about 175 1-hr cycles. Also in this case the growth rate of the oxide scale as well as its composition, structure and morphology showed no major relation to the microstructure of the base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Huang and E. L. Hall,Metall. Trans. 22A, 427 (1991).

    Google Scholar 

  2. M. Yamaguchi and H. Inui, inStructural Intermetallics, R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal, eds. (The Minerals, Metals & Materials Society, Warrendale, Pa, 1993), pp. 127–142.

    Google Scholar 

  3. S. C. Huang, E. L. Hall, and M. F. X. Gigliotti, inSixth World Conference on Titanium, P. Lacombe, R. Tricot, and G. Beranger, eds. (Soc. Francaise de Metallurgie, France, 1988), pp. 1109–1114.

    Google Scholar 

  4. E. L. Hall and S. C. Huang,J. Mater. Res. 4, 595 (1989).

    Google Scholar 

  5. A. Rahmel, W. J. Quadakkers, and H. Schütze,Werks. Korros. 46, 271 (1995).

    Google Scholar 

  6. A. Gil, F. Wallura, H. Grübmeier, and W. J. Quadakkers,J. Mater. Sci. 28, 5869 (1993).

    Google Scholar 

  7. A. Gil, H. Hoven, E. Wallura, and W. J. Quadakkers,Corros. Sci. 34, 615 (1993).

    Google Scholar 

  8. H. Clemens, W. Glatz, P. Schretter, C. Koeppe, A. Bartels, R. Behr, and A. Wanner, inGamma Titanium Aluminides, Y. W. Kim, R. Wagner, and M. Yamaguchi, eds. (The Minerals, Metals & Materials Society (TMS), Warrendale, Pa, 1995), pp. 717–726.

    Google Scholar 

  9. R. Behr, A. Wanner, H. Clemens, and W. Glatz,Mater. Res. Soc. Symp. Proc. 364, 781–786 (1995).

    Google Scholar 

  10. S. C. Huang and P. A. Siemers,Metall. Trans. 20A, 1899 (1989).

    Google Scholar 

  11. G. B. Viswanathan and V. K. Vasudevan,Scripta Metall. Mater. 32(10), 1705 (1995).

    Google Scholar 

  12. R. A. Perkins, K. T. Chiang, and G. H. Meier,Scripta Metall. 21, 1505 (1987).

    Google Scholar 

  13. T. A. Wallace, R. K. Clark, and K. E. Wiedemann,Oxid. Met. 42(5/6), 451 (1994).

    Google Scholar 

  14. S. Becker, A. Rahmel, M. Schorr, and M. Schütze,Oxid. Met. 38, 425 (1992).

    Google Scholar 

  15. S. Taniguchi, T. Shibata, and S. Iloh,Mater. Trans. JIM 32(2), 151 (1991).

    Google Scholar 

  16. Y. Shida and H. Anada,Mater. Trans. JIM,34(3), 236 (1993).

    Google Scholar 

  17. J. D. Sunderkötter, H. Jennett, and M. F. Stroosnijder, in Proc. 6th Eur. Conf. Appl. Surf. Interf. Anal., H. J. Mathieu, B. Reihl, and D. Briggs, eds. (Wiley and Sons, Chichester, U.K., 1996), p. 147.

    Google Scholar 

  18. M. F. Stroosnijder, J. D. Sunderkötter, and V. A. C. Haanappel, inDesign Fundamentals of High Temperature Composites, Intermetallics, and Metal-Ceramic Systems, R. Y. Lin, Y. A. Chang, R. G. Reddy, and C. T. Liu, eds. (The Minerals, Metals & Materials Society, Warrendale, Pa, 1996), p. 287.

    Google Scholar 

  19. N. S. Choudhury, H. S. Graham, and J. W. Hinze, inProperties of High Temperature Alloys with Emphasis on Environmental Effects, Z. A. Foroulis and F. S. Pettit, eds. (The Electrochemical Society, Princeton, NJ, 1977). p. 668.

    Google Scholar 

  20. G. H. Meier, F. S. Pettit, and S. Hu,J. Phys. IV 3, 395 (1993).

    Google Scholar 

  21. N. Zheng, W. J. Quadakkers, A. Gil, and H. Nickel,Oxid. Met. 44(5/6), 477 (1995).

    Google Scholar 

  22. To be published.

  23. Y. Umakoshi, M. Yamaguchi, T. Sakagami, and T. Yamane,J. Mater. Sci. 24, 1599 (1989).

    Google Scholar 

  24. N. Zheng, W. Fischer, H. Grübmeier, V. Shemet, and W. J. Quadakkers,Scripta Metall. Mater. 33(1), 47 (1995).

    Google Scholar 

  25. F. Dettenwanger, E. Schumann, J. Rakowski, G. H. Meier, and M. Rühle, TEM investigations concerning the effect of nitrogen on the oxidation of TiAl,Mater. Sci. Forum (to be published).

  26. F. Dettenwanger, E. Schumann, J. Rakowski, G. H. Meier, and M. Rühle, Development and microstructure of the Al-depleted layer of oxidized TiAl,Mater. Corros. (to be published).

  27. C. Lang and M. Schütze,Oxid. Met. 46(3/4), 255 (1996).

    Google Scholar 

  28. W. E. Dowling Jr. and W. T. Donlon,Scripta Metall. Mater. 27, 1663 (1992).

    Google Scholar 

  29. R. W. Beye and R. Gronsky,Acta Metall. Mater. 42, 1373 (1994).

    Google Scholar 

  30. Y. F. Cheng, F. Dettenwanger, J. Mayer, E. Schumann, and M. Rühle,Scripta Mater. 34(5), 707 (1996).

    Google Scholar 

  31. R. Wheeler, H. J. Schmutzler, H. L. Fraser, and M. F. Stroosnijder, TEM Study of Near Surface Microstructures Developed in Ti-48A1-2Cr During High Temperature Oxidation, to be published.

  32. S. Becker, M. Schütze, and A. Rahmel,Oxid. Met. 39(1/2), 93 (1993).

    Google Scholar 

  33. T. Shimizu, T. Likubo, and S. Isobe,Mater. Sci. Eng. A153, 602 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haanappel, V.A.C., Hofman, R., Sunderkötter, J.D. et al. The influence of microstructure on the isothermal and cyclic-oxidation behavior of Ti-48Al-2Cr at 800°C. Oxid Met 48, 263–287 (1997). https://doi.org/10.1007/BF01670503

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01670503

Keywords

Navigation