Skip to main content
Log in

Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras

  • Published:
Algebra and Logic Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. V. Ya. Gerchiu and A. V. Kuznetsov, "Varieties of pseudo-Boolean algebras defined by an identity of bounded length," in: Ninth All-Union Algebra Colloquium, Abstracts, Gomel (1968), pp. 54–56.

  2. A. V. Kuznetsov, "Some questions in the classification of superintuitionistic logics," Third All-Union Conference on Mathematical Logic, Novosibirsk (1974), pp. 119–122.

    Google Scholar 

  3. L. L. Maksimova, "Pretabular superintuitionistic logics," Algebra Logika,11, No. 5, 558–570 (1972).

    Google Scholar 

  4. L. L. Maksimova, "Pretabular extensions of the logicS4 of Lewis," Algebra Logika,14, No. 1, 28–55 (1975).

    Google Scholar 

  5. A. I. Mal'tsev, Algebraic Systems [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  6. H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, Panstwowe Wydawnistwo Naukowe, Warszawa (1963).

    Google Scholar 

  7. V. A. Yankov, "Calculus of the weak law of the excluded middle," Izv. Akad. Nauk SSSR, Ser. Mat.,32, No. 5, 1044–1051 (1968).

    Google Scholar 

  8. P. D. Bacsich, "Amalgamation properties and interpolation theorems for equational theories," Algebra Univ.,5, No. 1, 44–55 (1975).

    Google Scholar 

  9. W. Craig, "Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory," J. Symb. Logic,22, 269–285 (1957).

    Google Scholar 

  10. J. Czermak, "Interpolation theorem for some modal logics," in: Logic Colloquium '73, Proceedings, Bristol, 1973 (1975), pp. 381–393.

  11. M. Dummett, "A propositional calculus with denumerable matrix," J. Symb. Logic,24, 97–106 (1959).

    Google Scholar 

  12. D. Gabbay, "Semantic proof of the Craig interpolation theorem for intuitionistic logic and its extensions. I, II," in: Logic Colloquium '69, Amsterdam (1971), pp. 391–410.

  13. D. Gabbay, Craig's Theorem for Modal Logics, Lecture Notes in Mathematics, Vol. 255, Springer-Verlag, Berlin-Heidelberg-New York (1972).

    Google Scholar 

  14. G. Grätzer, Lattice Theory, Vol. 1, San Franciso (1971).

  15. G. Grätzer and H. Lasker, "The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation," Trans. Am. Math. Soc.,156, 343–358 (1971).

    Google Scholar 

  16. G. Grätzer, H. Lasker, and B. Jónsson, "The amalgamation property in equational classes of lattices," Pac. J. Math.,45, 507–524 (1973).

    Google Scholar 

  17. B. Jónsson, "Extensions of relational structures," in: The Theory of Models, Amsterdam (1965), pp. 146–157.

  18. C. G. McKay, "On finite logics," Indag. Math.,29, No. 3, 363–365. (1967).

    Google Scholar 

  19. D. Pigozzi, "Amalgamation, congruence-extension, and interpolation properties in algebras," Algebra Univ.,1, No. 3, 269–349 (1972).

    Google Scholar 

  20. D. Pigozzi, "Base-undecidable properties of universal varieties," Algebra Univ.,6, 193–223 (1976).

    Google Scholar 

  21. H. Rasiowa, "The Craig interpolation theorem form - valued predicate calculi," Bull. Acad. Polonaise Sci.,20, 341–346 (1972).

    Google Scholar 

  22. C. Rauszer, "On the strong semantical completeness of any extension of the intuitionistic predicate calculus," Bull. Acad. Polonaise Sci.,24, No. 2, 81–88 (1976).

    Google Scholar 

  23. K. Schütte, "Der Interpolationsatz der intuitionistischen Prädikatenlogik," Math. Ann.,148, 192–200 (1962).

    Google Scholar 

Download references

Authors

Additional information

Translated from Algebra i Logika, Vol. 16, No. 6, pp. 643–681, November–December, 1977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimova, L.L. Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras. Algebra and Logic 16, 427–455 (1977). https://doi.org/10.1007/BF01670006

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01670006

Keywords

Navigation