Skip to main content
Log in

De novo neuromuscular junction formation on human muscle fibres cultured in monolayer and innervated by foetal rat spinal cord: Ultrastructural and ultrastructural-cytochemical studies

  • Published:
Journal of Neurocytology

Summary

Ultrastructural features of neuromuscular junction formation and transverse tubule development were studied utilizing a newly developed model in which human muscle fibres cultured in monolayer are innervated by foetal rat spinal cord with dorsal root ganglia attached. At early innervation (7–10 days), when distinct ‘boutons’ are contacting muscle fibres, the contacts of nerve terminals with the muscle fibres are, ultrastructurally, superficial and unorganized, and there is no basal lamina-like material between nerve terminals and muscle fibres. A bouton consists, ultrastructurally, of a cluster of small nerve terminals contacting the muscle fibre. At 2–3 weeks of innervation, shallow ‘beds’ are formed on the muscle fibre just beneath nerve terminals, and occasionally there are irregular and miniscule fragments of basal lamina-like material in the cleft. There is no Schwann cell apposing the nerve terminal at this stage of innervation. After 4–5 weeks of innervation there is more definite basal lamina material in the cleft and suggestive postsynaptic plasmalemmal densities and invaginations. However, there is no Schwann cell apposing the nerve terminal at this stage. At 6–8 weeks of innervation, deep postsynaptic folds are present, a Schwann cell apposes the nerve terminal, and basal lamina surrounds the entire muscle fibre. At all four stages of innervation examined, ultrastructural cytochemistry of alpha-bungarotoxin binding reveals that nicotinic ACh receptors are located exclusively at the neuromuscular junctions. After 1–2 weeks of innervation, very few lanthanum-positive transverse tubules are observed and only in close proximity to the surface membrane. After 3 weeks of innervation, more lanthanum-positive tubules are present, and they are located deeper within the muscle fibre. Five weeks after innervation, somewhat more elaborated tubules (but no lateral sacs) appear, and honeycomb structures are often present. After 6–7 weeks of innervation the tubular system is very elaborate and lateral sacs are present. Hence, this study describes consecutive stages of the formation of neuromuscular junctions and transverse tubules in innervated cultured human muscle, and provides an important basis to which similar studies related to the diseased human muscle can be compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askanas, V. (1984) Human muscle and Schwann cells in tissue culture as a tool in studying pathogenesis and treatment of neuromuscular disorders. InNeuromuscular Diseases (edited bySerratrice, G., Cros, C., Desnuelle, C., Gastaut, J. L., Pellissier, J. F., Pought, J. &Schiano, A.), pp. 373–9. New York: Raven Press.

    Google Scholar 

  • Askanas, V. Cave, S. &Engel, W. K. (1985a) Serum free, hormonally-chemically defined medium for primary culture of human muscle.Abstracts of the Society for Neuroscience, p. 916.

  • Askanas, V. &Engel, W. K. (1975a) New program for investigating adult human skeletal muscle grown aneurally in tissue culture.Neurology 25, 58–67.

    Google Scholar 

  • Askanas, V. &Engel, W. K. (1975b) A technique of fiber selection from human tissue cultures for histochemical-electron microscopic studies.Journal of Histochemistry and Cytochemistry 23, 144–6.

    Google Scholar 

  • Askanas, V. &Engel, W. K. (1979) Normal and diseased human muscle in tissue culture. InHandbook of Clinical Neurology (edited byVinken, P. J. &Bryun, G. W.), pp. 183–96. New York: North Holland.

    Google Scholar 

  • Askanas, V., Engel, W. K. &Kobayashi, T. (1985b) TRH enhances motor-neuron-evoked contractions of cultured human muscle.Annals of Neurology 27, 1015–22.

    Google Scholar 

  • Askanas, V., Engel, W. K., Ringel, S. P. &Bender, A. N. (1977) Acetylcholine receptors in aneurally cultured human and skeletal muscle.Neurology 32, 846–50.

    Google Scholar 

  • Askanas, V. &Gallez-Hawkins, G. (1985) Synergistic influence of polypeptide growth factors on cultured human muscle.Archives of Neurology 18, 716–19.

    Google Scholar 

  • Avigan, J., Askanas, V. &Engel, W. K. (1983) Muscle carnitine deficiency: fatty acids metabolism in cultured fibroblast and muscle cells.Neurology 33, 1021–6.

    Google Scholar 

  • Beach, R. L., Burton, W. V., Hendricks, W. J. &Festoff, B. W. (1982) Extracellular matrix synthesis by skeletal muscle in culture.Journal of Biological Chemistry 257, 11437–42.

    Google Scholar 

  • Bender, A. N., Ringel, S. P. &Engel, W. K. (1976) Immunoperoxidase localization of alpha-bungarotoxin: a new approach to myasthenia gravis.Annals of the New York Academy of Science 274, 20–30.

    Google Scholar 

  • Bennett, M. R. (1983) Development of neuromuscular synapses.Physiological Reviews 63, 915–1048.

    Google Scholar 

  • Bennett, M. R. &Pettigrew, A. G. (1974) The formation of synapses in striated muscle during development.Journal of Physiology 241, 515–45.

    Google Scholar 

  • Burden, S. J., Sargent, P. B. &McMahan, U. J. (1979) Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve.Journal of Cell Biology 182, 412–25.

    Google Scholar 

  • Bursztajn, S. (1984) Coated vesicles are associated with acetylcholine receptors at nerve-muscle contacts.Journal of Neurocytology 13, 503–18.

    Google Scholar 

  • Couteaux, R. &Pécot-Dechavassine, M. (1970) Vesicules synaptiques et poches au niveau des zones actives de la jonction neuromusculaire.Comptes Rendus de l'Académie des Sciences Paris D 271, 2346–9.

    Google Scholar 

  • Crain, S. M., Alfei, L. &Peterson, E. R. (1970) Neuromuscular transmission in cultures of adult human and rodent skeletal muscle after innervationin vitro by fetal spinal cord.Journal of Neurobiology 1, 471–89.

    Google Scholar 

  • Denis, M. J. (1981) Development of the neuromuscular junction: inductive interactions between cells.Annual Review of Neuroscience 4, 43–68.

    Google Scholar 

  • Denis, M. J., Ziskend-Conhaim, L. &Harris, A. J. (1981) Development of neuromuscular junctions in rat embryos.Developmental Biology 81, 266–79.

    Google Scholar 

  • DiMauro, S., Arnold, S., Miranda, A. &Rowland, L. P. (1978) McArdle's disease: the mystery of reappearing phosphorylase activity in muscle culture. A fetal isoenzyme.Annals of Neurology 3, 60–6.

    Google Scholar 

  • Dreyer, F., Pefer, K., Akert, K., Sandri, C. &Moor, H. (1973) Ultrastructure of the active zone in the frog neuromuscular junction.Brain Research 62, 373–80.

    Google Scholar 

  • Ecob, M. (1984) The location of neuromuscular junctions on regenerating adult mouse muscle in culture.Journal of the Neurological Sciences 64, 175–82.

    Google Scholar 

  • Edge, M. B. (1970) Development of apposed sarcoplasmic reticulum at the T system and sarcolemma and the change in orientation of triads in rat skeletal muscle.Developmental Biology 23, 634–59.

    Google Scholar 

  • Engel, W. K. (1979) Dagen des Oordeels: pathokinetic mechanisms and molecular messengers (a dramatic view).Archives of Neurology 36, 329–39.

    Google Scholar 

  • Engel, A. G., Lindstrom, J. M., Lambert, E. H. &Lennon, V. A. (1977) Ultrastructural localization of the acetylcholine receptor in myasthenia gravis and in its experimental autoimmune model.Neurobiology 27, 307–15.

    Google Scholar 

  • Ezerman, E. B. &Ishikawa, H. (1967) Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal musclein vitro.Journal of Cell Biology 35, 405–20.

    Google Scholar 

  • Fischbach, G. D. (1972) Synapse formation between dissociated nerve and muscle cells in low density cell culture.Developmental Biology 28, 407–29.

    Google Scholar 

  • Fischbach, G. D., Frank, E., Jessel, T. M., Rubin, L. L. &Scheutze, S. M. (1979) Accumulation of acetylcholine receptors and acetylcholinesterase at newly formed nerve-muscle synapses.Pharmacological Reviews 30, 411–28.

    Google Scholar 

  • Frank, E. &Fischbach, G. D. (1979) Early events in neuromuscular junction formationin vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses.Journal of Cell Biology 83, 143–58.

    Google Scholar 

  • Franzini-Armstrong, C. (1986) The sarcoplasmic reticulum and the transverse tubules. InMyology, Vol. 1 (edited byEngel, A. G. &Banker, B.), pp. 125–53. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Gorycki, M. &Askanas, V. (1977) Improvements of the technique of electron-microscopy of the cultured cells.Stain Technology 52, 249–54.

    Google Scholar 

  • Hirano, H. (1967) Ultrastructural study of the morphogenesis of the neuromuscular junction in the skeletal muscle of the chick.Zeitschrift für Zellforschung und mikroskopische Anatomie 79, 411–28.

    Google Scholar 

  • Jones, S. W. &Salpeter, M. M. (1983) Absence of [125] I-alpha-bungarotoxin binding to motor nerve terminals of frog, lizard and mouse muscle.Journal of Neuroscience 3, 326–31.

    Google Scholar 

  • Kelly, A. M. (1971) Sarcoplasmic reticulum and T tubules in differentiating rat skeletal muscle.Journal of Cell Biology 49, 335–44.

    Google Scholar 

  • Kelly, A. M. (1980) T tubules in neonatal rat soleus and extensor digitorum longus muscles.Developmental Biology 80, 501–5.

    Google Scholar 

  • Kelly, A. M. &Zacks, S. I. (1969) The fine structure of motor endplate myogenesis.Journal of Cell Biology 42, 154–69.

    Google Scholar 

  • Kidokoro, Y. (1980) Developmental changes of spontaneous synaptic potential properties in the rat neuromuscular contact formed in culture.Developmental Biology 78, 231–41.

    Google Scholar 

  • Kidokoro, Y., Heinemann, S., Schubert, D., Brandt, B. L. &Klier, F. G. (1975) Synapse formation and neurotrophic effects on muscle cell lines. InThe Synapse, Cold Spring Harbor Symposium on Quantitative Biology, XL, pp. 373–88. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Kobayashi, T. &Askanas, V. (1985) Acetylcholine receptors and acetylcholinesterase accumulate at the nerve-muscle contacts ofde-novo grown human monolayer muscle co-cultured with fetal rat spinal cord.Experimental Neurology 88, 327–35.

    Google Scholar 

  • Kobayashi, T., Askanas, V. &Engel, W. K. (1986) Developmental relationship between clusters of acetylcholine receptors and acetylcholinesterase sites in functionally and nonfunctionally innervated cultured human muscle.Muscle and Nerve 9, Suppl. 5S, 147.

    Google Scholar 

  • Koenig, J. &Pécot-Dechavassine, M. (1971) Relations entre l'apparation des plaques motrices en voil de reinnervation et de néoformation chez le rat.Brain Research 27, 43–57.

    Google Scholar 

  • Konigsberg, L. R. (1963) Clonal analysis of myogenesis.Science 140, 1273.

    Google Scholar 

  • Kullberg, R. W., Lentz, T. L. &Cohen, M. W. (1977) Development of myotomal neuromuscular junction inXenopus laevis: an electrophysiological and fine structural study.Developmental Biology 60, 101–29.

    Google Scholar 

  • Lentz, T. L., Mazurkiewicz, J. E. &Rosenthal, J. (1977) Cytochemical localization of acetylcholine receptors at the neuromuscular junction by means of horseradish peroxidase-labeled alpha-bungarotoxin.Brain Research 132, 423–42.

    Google Scholar 

  • Lømo, T., Mirsky, R. &Pockett, S. (1984) Formation of neuromuscular junctions in adults rats: role of postsynaptic impulse activity. InNeuromuscular Disease (edited bySerratrice, G., Cros, C., Desnuelle, C., Gastaut, J. L., Pellisier, J. F., Pouget, J. &Schiano, A.), pp. 393–9. New York: Raven Press.

    Google Scholar 

  • Luff, A. R. &Atwood, H. L. (1971) Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development.Journal of Cell Biology 51, 369–83.

    Google Scholar 

  • Marshall, L. M., Sanes, J. R. &McMahan, U. J. (1977) Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells.Proceedings of the National Academy of Sciences USA 74, 3073–7.

    Google Scholar 

  • Martinuzzi, A., Askanas, V., Kobayashi, T. &Engel, W. K. (1987) Developmental expression of muscle specific isozyme of phosphoglycerate mutase in human muscle cultured in monolayer and innervated by fetal rat spinal cord.Experimental Neurology 96, 365–75.

    Google Scholar 

  • Martinuzzi, A., Askanas, V., Kobayashi, T., Engel, W. K. &Dimauro, S. (1986) Expression of muscle-gene specific isoenzyme of phosphorylase and creatine kinase in innervated cultured human muscle.Journal of Cell Biology 103, 1423–9.

    Google Scholar 

  • Matthews-Bellinger, J. A. &Salpeter, M. M. (1983) Fine structural distribution of acetylcholine receptors at developing mouse neuromuscular junction.Journal of Neuroscience 3, 644–57.

    Google Scholar 

  • Meienhofer, M. C., Askanas, V., Proux-Daeglen, D., Dreyfus, J. C. &Engel, W. K. (1977) Muscle-type phosphorylase activity in muscle cells cultured from three patients with myophosphorylase deficiency.Archives of Neurology 34, 779–81.

    Google Scholar 

  • Miranda, A. F. &Mongini, T. (1984) Duchenne muscle culture: current status and future trends. InNeuromuscular Diseases (edited bySerratrice, G., Cros, C., Desnuelle, C., Gastaut, J. L., Pellissier, J. F., Pouget, J. &Schiano, A.), pp. 365–71. New York: Raven Press.

    Google Scholar 

  • Nakajima, Y., Kidokoro, Y. &Klier, F. G. (1980) The development of functional neuromuscular junctionsin vitro: an ultrastructural and physiological study.Developmental Biology 77, 52–72.

    Google Scholar 

  • Nakane, P. K. &Kawaoi, A. (1974) Peroxidase-labeled antibody. A new method of conjugation.Journal of Histochemistry and Cytochemistry 22, 1084–91.

    Google Scholar 

  • Peterson, E. R. &Grain, S. M. (1979) Maturation of human muscle after innervation by fetal mouse spinal cord expiants in long-term cultures. InMuscle Regeneration (edited byMauro, A.), pp. 429–41. New York: Raven Press.

    Google Scholar 

  • Revel, J. P. &Karnovsky, M. J. (1967) Hexagonal array of subunits in intercellular junction of the mouse heart and liver.Journal of Cell Biology 33, C7-C12.

    Google Scholar 

  • Roelofs, R. I., Engel, W. K. &Chauvin, P. B. (1972) Histochemical demonstration of phosphorylase activity in regenerating skeletal muscle fibers from myophosphorylase deficiency patients.Science 177, 795–7.

    Google Scholar 

  • Saito, K., Kobayashi, T., Askanas, V., Engel, W. K. &Ishikawa, K. (1986) Electrical parameters of human muscle cultured in monolayer aneurally and innervated by rat spinal cord.Muscle and Nerve 9, Suppl. 5S, 162.

    Google Scholar 

  • Sanes, J. R. (1986) Extracellular matrix. InMyology, Vol. 1 (edited byEngel, A. G. &Banker, B. Q.), pp. 155–75. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Sanes, J. R. &Lawrence, J. C., Jr (1983) Activity-dependent accumulation of basal lamina by cultured rat myotubes.Developmental Biology 97, 123–36.

    Google Scholar 

  • Sanes, J. R., Marshall, L. M. &McMahan, U. J. (1978) Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites.Journal of Cell Biology 78, 176–98.

    Google Scholar 

  • Schiaffino, S., Cantini, M. &Sartore, S. (1977) T-system formation in cultured rat skeletal muscle.Tissue and Cell 9, 437–46.

    Google Scholar 

  • Schmidt-Achert, M. K., Askanas, V. &Engel, W. K. (1984) Thyrotropin-releasing hormone enhances choline acetyltransferase and creatine kinase in cultured spinal ventral horn neurons.Journal of Neurochemistry 43, 586–9.

    Google Scholar 

  • Shimada, Y. &Fischman, D. A. (1973) Morphological and physiological evidence for the development of functional neuromuscular junctionsin vitro.Developmental Biology 31, 200–25.

    Google Scholar 

  • Shimada, Y., Fischman, D. A. &Moscona, A. A. (1967) The fine structure of embryonic chick skeletal muscle cells differentiatedin vitro.Journal of Cell Biology 35, 445–53.

    Google Scholar 

  • Silberstein, L., Inestrosa, N. &Hall, Z. W. (1982) Aneural muscle cell cultures make synaptic basal lamina components.Nature 295, 143–5.

    Google Scholar 

  • Tahmoush, A. J., Askanas, V., Nelson, P. G. &Engel, W. K. (1983) Electrophysiologic properties of aneurally cultured muscle from patients with myotonic muscular atrophy.Neurology 33, 311–16.

    Google Scholar 

  • Vita, G., Askanas, V., Martinuzzi, A. &Engel, W. K. (1987) Histoenzymatic profile of human muscle cultured in monolayer and innervatedde novo by fetal rat spinal cord.Muscle and Nerve (in press).

  • Vogel, Z., Sytkowski, A. J. &Nierenberg, M. W. (1982) Acetylcholine receptors of muscle grown in vitro.Proceedings of the National Acadamy of Sciences USA 69, 3180–4.

    Google Scholar 

  • Weldon, P. R. &Cohen, M. W. (1979) Development of synaptic ultrastructure at neuromuscular contacts in an amphibian cell culture system.Journal of Neurocytology 8, 239–59.

    Google Scholar 

  • Witkowski, J. A. (1986a) Tissue culture studies of muscle disorders: part 1. Techniques, cell growth, morphology, cell surface.Muscle and Nerve 9, 191–207.

    Google Scholar 

  • Witkowski, J. A. (1986b) Tissue culture studies of muscle disorders: part 2. Biochemical studies, nerve-muscle culture, metabolic myopathies and animal models.Muscle and Nerve 9, 283–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askanas, V., Kwan, H., Alvarez, R.B. et al. De novo neuromuscular junction formation on human muscle fibres cultured in monolayer and innervated by foetal rat spinal cord: Ultrastructural and ultrastructural-cytochemical studies. J Neurocytol 16, 523–537 (1987). https://doi.org/10.1007/BF01668506

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01668506

Keywords

Navigation