Skip to main content
Log in

Non-pyramidal hippocampal projection neurons: A light and electron microscopic study

  • Published:
Journal of Neurocytology

Summary

Following injections of horseradish peroxidase conjugated with wheat germ agglutinin into the medial nucleus accumbens of the rat, a large number of projecting pyramidal neurons in the hippocampus were retrogradely labelled. In addition to this major projection, a few retrogradely labelled cells were tentatively identified at the light microscopic level as non-pyramidal neurons. These presumptive non-pyramidal neurons were found in all hippocampal layers, although they were mainly outside the stratum pyramidale, in the stratum oriens. Ultrastructurally, in serial sections, the non-pyramidal nature of 20 of these neurons was confirmed by their characteristic features such as deeply indented nuclei, occasional intranuclear inclusions, and symmetric and asymmetric synaptic contacts with their somata. Possible-transmitters used by these neurons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, A. &Köhler, C. (1982) Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain.Neuroscience Letters 31, 209–14.

    Google Scholar 

  • Carman, J. B., Cowan, W. M. &Powell, T. P. S. (1963) The organisation of cortico-striate connections in the rabbit.Brain 86, 525–62.

    Google Scholar 

  • Chronister, R. B. &De France, J. F. (1979) Organisation of projection neurons of the hippocampus.Experimental Neurology 66, 509–23.

    Google Scholar 

  • Chronister, R. B., Sikes, R. W., Trow, T. W. &De France, J. F. (1981) The organisation of the nucleus accumbens. InNeurobiology of the Nucleus Accumbens (edited byChronister, R. B. &De France, J. F.), pp. 97–146. Maine, USA: Haer Institute for Electrophysiological Research.

    Google Scholar 

  • Dockray, G. J., Williams, R. G. &Zhu, W-Y. (1981) Development of region specific antisera for the C-terminal tetrapeptide of gastrin/cholecystokinin in the rat brain.Neurochemistry International 3, 281–8.

    Google Scholar 

  • Fairén, A., Defelipe, J. &Martinez-Ruiz, R. (1981) The Golgi-EM procedure: a tool to study neocortical inter-neurons. InGlial and Neuronal Cell Biology (11th International Congress of Anatomy), pp. 291–301. New York: Alan R. Liss.

    Google Scholar 

  • Fairén, A., Peters, A. &Saldanha, J. (1977) A new procedure for examining Golgi impregnated neurons by light and electron microscopy.Journal of Neurocytology 6, 311–37.

    Google Scholar 

  • Fallon, J. H., Hicks, R. &Loughlin, S. E. (1983) The origin of cholecystokinin terminals in the basal forebrain of the rat; evidence from immunofluorescence and retrograde tracing.Neuroscience Letters 37, 29–35.

    Google Scholar 

  • Freund, T. F. &Somogyi, P. (1983) The section Golgi impregnation procedure. I. Description of the method and its combination with histochemistry after intracellular iontophoresis or retrograde transport of horseradish peroxidase.Neuroscience 9, 463–74.

    Google Scholar 

  • Gonatas, N. K., Harper, C., Mizutani, T. &Gonatas, J. O. (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheatgerm agglutinin for studies of retrograde axonal transport.Journal of Histochemistry and Cytochemistry 27, 728–34.

    Google Scholar 

  • Greenwood, R. S., Godar, E., Reaves, T. A. &Hayward, J. N. (1981) Cholecystokinin in hippocampal pathways.Journal of Comparative Neurology 203, 335–50.

    Google Scholar 

  • Groenewegen, H. J., Arnold, D. &Lopes Da Silva, F. H. (1981) Afferent connections of the nucleus accumbens in the cat, with special emphasis on the projections from the hippocampal region — an anatomical and electrophysiological study. InNeurobiology of the Nucleus Accumbens (edited byChronister, R. B. &De France, J. F.), pp. 41–74. Maine, USA: Haer Institute for Electrophysiological Research.

    Google Scholar 

  • Groenewegen, H. J., Room, P., Witter, M. P. &Lohman, A. H. M. (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques.Neuroscience 7, 977–95.

    Google Scholar 

  • Heimer, L. &Wilson, R. D. (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. InGolgi Centennial Symposium Proceedings (edited bySantini, M.), pp. 177–93. New York: Raven Press.

    Google Scholar 

  • Hodgson, A. J., Penke, B., Erdei, A., Chubb, I. W. &Somogyi, P. (1985) Antisera to γ-aminobutyric acid. I. Production and characterization using a new model system.Journal of Histochemistry and Cytochemistry 33, 229–39.

    Google Scholar 

  • Kelley, A. E. &Domesick, V. B. (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study.Neuroscience 7, 2321–35.

    Google Scholar 

  • König, J. F. R. AndKlippel, R. A. (1963)The Rat Brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Kosaka, T. &Hama, K. (1985) Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions): a combined Golgi-electron microscopy study.Journal of Comparative Neurology 231, 150–62.

    Google Scholar 

  • Newman, R. &Winans, S. S. (1980) An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens.Journal of Comparative Neurology 191, 167–92.

    Google Scholar 

  • Nunzi, M. G., Gorio, A., Milan, F., Freund, T. F., Somogyi, P. &Smith, A. D. (1985) Cholecystokinin-immunoreactive cells form symmetrical synaptic contacts with pyramidal and nonpyramidal neurons in the hippocampus.Journal of Comparative Neurology 237, 485–505.

    Google Scholar 

  • Phillipson, O. T. &Griffiths, A. C. (1985) The topographical order of inputs to the nucleus accumbens in the rat.Neuroscience 16, 275–96.

    Google Scholar 

  • Raisman, G., Cowan, W. M. &Powell, T. P. S. (1966) An experimental analysis of the efferent projection of the hippocampus.Brain 92, 83–108.

    Google Scholar 

  • Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy.Journal of Cell Biology 17, 208–12.

    Google Scholar 

  • Schlander, M. &Frotscher, M. (1986) Non-pyramidal neurons in the guinea pig hippocampus: a combined Golgi-electron microscope study.Anatomy and Embryology 174, 35–47.

    Google Scholar 

  • Schwerdtfeger, W. K. &Buhl, E. (1986) Various types of non-pyramidal hippocampal neurons project to the septum and contralateral hippocampus.Brain Research 386, 146–54.

    Google Scholar 

  • Schwerdtfeger, W. K. &Sarvey, J. M. (1983) Connectivity of the hilar region of the hippocampal formation in the rat.Journal für Hirnforschung 24, 201–7.

    Google Scholar 

  • Seress, L. &Ribak, C. E. (1985) A combined Golgi-electron microscopic study of non-pyramidal neurons in the CA1 area of the hippocampus.Journal of Neurocytology 14, 717–30.

    Google Scholar 

  • Somogyi, P., Freund, T. F., Halasz, N. &Kisvarday, Z. (1981) Selectivity of neuronal (3H)GABA accumulation in the visual cortex as revealed by Golgi staining of the labeled neurons.Brain Research 225, 431–6.

    Google Scholar 

  • Somogyi, P., Hodgson, A. J., Chubb, I. W., Penke, B. &Erdei, A. (1985) Antisera to γ-aminobutyric acid. II. Immunocytochemical application to the central nervous system.Journal of Histochemistry and Cytochemistry 33, 240–8.

    Google Scholar 

  • Somogyi, P., Smith, A. D., Nunzi, M. G., Gorio, A., Takagi, H. &Wu, J. Y. (1983) Glutamate decarboxylase immunoreactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons.Journal of Neuroscience 3, 1450–68.

    Google Scholar 

  • Swanson, L. W. &Cowan, W. M. (1975) Note on the connections and development of the nucleus accumbens.Brain Research 92, 324–30.

    Google Scholar 

  • Totterpell, S. &Smith, A. D. (1986) Cholecystokininimmunoreactive boutons in synaptic contact with hippocampal neurons that project to the nucleus accumbens.Neuroscience 19, 181–92.

    Google Scholar 

  • Walaas, I. &Fonnum, F. (1979) The effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat.Neuroscience 4, 209–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Totterdell, S., Hayes, L. Non-pyramidal hippocampal projection neurons: A light and electron microscopic study. J Neurocytol 16, 477–485 (1987). https://doi.org/10.1007/BF01668502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01668502

Keywords

Navigation