Skip to main content
Log in

The form of representations of the canonical commutation relations for Bose fields and connection with finitely many degrees of freedom

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a representation of the canonical commutation relations (CCR) for Bose fields in a separable (or, under an additional assumption, nonseparable) Hilbert space ℌ it is shown that there exists a decreasing sequence of finite and quasi-invariant measures μ n on the space

of all linear functionals on the test function space

, such that ℌ can be realized as the direct sum of the\(L_{\mu _n }^2 \), the space of all μ n -square-integrable functions on

. In this realizationU(f) becomes multiplication by

. The action ofV(g) is similar as in the case of cyclicU(f) which has been treated byAraki andGelfand. But different\(L_{\mu _n }^2 \) can be mixed now. Simply transcribing the results in terms of direct integrals one obtains a form of the representations which turns out to be essentially the direct integral form ofLew. All results are independent of the dimensionality of

and hold in particular for dim

. Thus one has obtained a form of the CCR which is the same for a finite and an infinite number of degrees of freedom. From this form it is in no way obvious why there is such a great distinction between the finite and infinite case. In order to explore this question we derive von Neumanns theorem about the uniqueness of the Schrödinger operators in a constructive way from this dimensionally independent form and show explicitly at which point the same procedure fails for the infinite case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H.: Hamiltonian formalism and the canonical commutation relations in quantum field theory. J. Math. Phys.1, 492 (1960).

    Google Scholar 

  2. cf.Gelfand, I. M., andN. Y. Vilenkin: Generalized functions. Vol. 4, (last section). New York: Academic Press 1964.

    Google Scholar 

  3. Lew, I. S.: The structure of representations of the canonical commutation relations in quantum field theory. Thesis, Princeton University 1960 (unpublished).

  4. Neumann, J. von: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann.32, 191 (1931).

    Google Scholar 

  5. Straumann, N.: A new proof of von Neumann's theorem concerning the uniqueness of the Schrödinger operators. Helv. Phys. Acta40, 518 (1967).

    Google Scholar 

  6. Kirillov, A. A.: Unitary representations of nilpotent Lie groups. Russ. Math. Surveys17, 53 (1962).

    Google Scholar 

  7. Bochner, S.: Vorlesungen über Fouriersche Integrale, (cf. p. 20). Leipzig: Akademische Verlagsgesellschaft 1932.

    Google Scholar 

  8. Kolmogorov, A.: Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik, Bd. 2, No. 3. Berlin: Springer 1933.

    Google Scholar 

  9. Hegerfeldt, G. C.: Aspekte der kanonischen Vertauschungsrelationen für Quantenfelder, Habilitationsschrift, Universität Marburg 1968. Kernel integral formulas for the canonical commutation relations of quantum fields. I. Representations with cyclic field. To appear in J. Math. Phys. (1969).

  10. Bochner, S.: Harmonic analysis and the theory of probability, (see Theorem 2.1.4, p. 24). Berkeley and Los Angeles: University of California Press 1960.

    Google Scholar 

  11. Neumark, M. A.: Normierte Algebren, (cf. p. 253). Berlin: VEB Deutscher Verlag der Wissenschaften 1959.

    Google Scholar 

  12. Naimark, M. A., andS. V. Fomin: Continuous direct sums of Hilbert spaces and some of their applications. Ann. Math. Soc. Transl. Ser. 2,5, 35 (1957).

    Google Scholar 

  13. cf. [2], pp. 351–352.

    Google Scholar 

  14. Dunford, N., andJ. T. Schwarz: Linear operators, Part I, (p. 136). New York: Interscience 1958.

    Google Scholar 

  15. cf. [14], p. 181.

    Google Scholar 

  16. Riesz, F., andBéla Sz.-Nagy: Vorlesungen über Funktionalanalysis (p. 370). Berlin: VEB Deutscher Verlag der Wissenschaften 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this paper is contained in Section IV of theHabilitationsschrift “Aspekte der kanonischen Vertauschungsrelationen für Quantenfelder” byG. C. Hegerfeldt, University of Marburg 1968.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegerfeldt, G.C., Melsheimer, O. The form of representations of the canonical commutation relations for Bose fields and connection with finitely many degrees of freedom. Commun.Math. Phys. 12, 304–323 (1969). https://doi.org/10.1007/BF01667316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01667316

Keywords

Navigation