Skip to main content
Log in

Nature and thermal stability of radiation defects in single-crystal tungsten

  • Published:
Soviet Atomic Energy Aims and scope

Conclusions

  1. 1.

    The irradiation of single-crystal tungsten of the electron-beam zone-melted type with an integrated neutron flux of 1.4·1022 neutrons/cm2 (4·1021 neutrons/cm2 with an energy of E>1 MeV) at 450–500°C raises the electrical resistivity by 18% at 298°K, 140% at 77°K, and almost 1000 times at 4.2°K, and also causes rhenium to accumulate to the extent of 0.2 at.%.

  2. 2.

    We observed three annealing stages of the radiation defects, identified as follows: at 500–800°C (“stage IV”), small hydrogen aggregates; at 950–1200°C (“stage V”), single vacancies and small vacancy aggregates; at 1200–1900°C (“stage VI”), dislocation loops and pores. The activation energies for these three stages are 0.70±0.03, 3.2±0.3, and 6.4±0.5 eV respectively, and the annealing-rate maxima occur at 0.24, 0.35, and 0.45 Tm.

  3. 3.

    The change in the resistivity of single-crystal tungsten on irradiation is associated with the formation of small aggegates of hydrogen atoms (20.2%), single vacancies (16.5%), complex defects (43.3%), and rhenium (20%).

  4. 4.

    A high integrated neutron flux, a high irradiation temperature, e.g., (0.20–0.21) Tm, and the absence of grain boundaries as sinks for defects lead to the predominant accumulation of complex defects in single-crystal tungsten; these are stable up to 1900°C and their chief effect is that of a change in electrical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Y. Nihoul, Radiation Damage of Reactor Materials, Proc. of Symposium, IAEA, Vienna (1969), p. 3.

  2. H. van Bueren, Z. Metallkunde,46, 272 (1955).

    Google Scholar 

  3. M. Thompson, Phil. Mag.,5, 278 (1960).

    Google Scholar 

  4. L. Keys and Y. Moteff, J. Nucl. Materials,34, 260 (1970).

    Google Scholar 

  5. L. Keys et al., Phys. Rev.,176, 851 (1968).

    Google Scholar 

  6. L. Keys et al., J. Nucl. Materials,33, 337 (1969).

    Google Scholar 

  7. J. Brimhall, B. Mastel, and T. Birlein, Acta Metallurgica,16, 781 (1968).

    Google Scholar 

  8. A. I. Ivanov, L. A. Elesin, and N. F. Pravdyuk, Radiation Damage of Reactor Materials, Proc. Symposium, IAEA, Vienna (1969), p. 289.

  9. L. Keys and Y. Moteff, J. Appl. Phys.,40, 3866 (1969).

    Google Scholar 

  10. M. Kissinger and B. Mastel, Intern. Conf. on Vacancies and Interstitial Atoms (Julich), Vol. 2 (1967), p. 693.

    Google Scholar 

  11. H. Kulmann and H. Schultz, Acta Metal.,14, 798 (1966).

    Google Scholar 

  12. D. Jeanotte and J. Galligan, Phys. Rev. Letters, 19, 232 (1967).

    Google Scholar 

  13. Sh. Sh. Peizulaev et al., in: Physicochemical Fundamentals of Crystallization Processes in the Intensive Refiniement of Metals [in Russian], Nauka, Moscow (1970), p. 128.

    Google Scholar 

  14. B. G. Livshits, Physical Properties of Metals and Alloys [in Russian], Mashgiz, Moscow (1956), p. 164.

    Google Scholar 

  15. V. B. Zernov and Yu. V. Shavrin, Zh. Éksp. Teor. Fiz.,36, 138 (1959).

    Google Scholar 

  16. A. Damask and J. Deans, Point Defects in Metals [Russian translation], Mir, Moscow (1966), p,. 153.

    Google Scholar 

  17. H. Schultz, Acta Metallurgica,12, 649 (1964).

    Google Scholar 

  18. J. Galligan and T. Oku, Phys. Stat. Sol.,36, K79 (1969).

    Google Scholar 

  19. L. Keys et al., Phys. Rev. Letters,2, No. 2, 57 (1969).

    Google Scholar 

  20. R. Gibala and K. E. Wert, in: Diffusion in bcc Metals [Russian translation], Metallurgiya, Moscow (1969), p. 139.

    Google Scholar 

  21. A. P. Zakharov, Author's Abstract, Candidate's Dissertation [in Russian], Inst. Fiz. Khim., Akad. Nauk SSSR (1970).

  22. A. A. Mazaev, R. G. Avarbé, and Yu. N. Vil'k, Zh. Fiz. Khim.,42, 641 (1968).

    Google Scholar 

Download references

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 33, No. 4, pp. 809–813, October, 1972.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, V.N., Birzhevoi, G.A., Zakharova, M.I. et al. Nature and thermal stability of radiation defects in single-crystal tungsten. At Energy 33, 930–935 (1972). https://doi.org/10.1007/BF01666749

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01666749

Keywords

Navigation