Polysaccharide and protein secretion by grass microhairs

A cytochemical study at light and electron microscopic levels

Summary

Secretory activities of bicellular microhairs from grasses belonging to the subfamilies Chloridoideae, Arundinoideae, Panicoideae, and Bambusoideae, and including the “chloridoid”, “panicoid” and “Enneapogon” microhair morphological types, have been investigated. Light microscopic histochemistry indicated that all microhairs studied secrete polysaccharide and protein (or glycoprotein), including those which also secrete salt. Localization of polysaccharide at ultrastructural level using periodic acid-thiocarbohydrazidesilver proteinate staining revealed that in “panicoid type” microhairs dictyosomes are involved in polysaccharide secretion, whereas in the “chloridoid” and “Enneapogon” types “partitioning membranes” seem to be involved instead.

This is a preview of subscription content, log in to check access.

Abbreviations

Ag:

silver precipitates representing localization of polysaccharide

BC:

basal cell

C:

cuticle

CC:

cap cell

CH:

cuticular chamber

CN:

system of membrane bound channels and vesicles

CP:

chloroplast

CW:

cell wall

D:

dictyosomes

M:

mitochondria

N:

nucleus

PTM:

partitioning membranes

RER:

rough endoplasmic reticulum

S:

secretory material

St:

starch grain

US:

unstained dictyosome cisternae

V:

vesicle

References

  1. Albersheim P, Darvill AG, Sharp KJ, Davis K, Doares SH (1986) Studies on the role of carbohydrates in host-microbe interactions. In: Lugtenberg B (ed) Recognition in microbe-plant symbiotic and pathogenic interactions. Springer, Berlin Heidelberg New York Tokyo.

    Google Scholar 

  2. Amarasinghe V (1988) Comparative ultrastructure, function and taxonomic significance of microhairs in grasses. PhD thesis, Australian National University

  3. —, Watson L (1988) Comparative ultrastructure of microhairs in grasses. Bot J Lin Soc 98: 303–319

    Google Scholar 

  4. — — (1989) Variation in salt secretory activity of microhairs in grasses. Aust J Plant Physiol 16: 219–229

    Google Scholar 

  5. Behnke O, Zelander T (1970) Preservation of intercellular substances by the cationic dye Alcian blue for preparative procedures for electron microscopy. J Ultrastruct Res 31: 424–438

    Google Scholar 

  6. Benhamou N, Ouellette GB (1986) Ultrastructural localization of glycoconjugates in the fungusAsolyx abietina, the scleroderris canker agent of conifers, using lectin-gold complexes. J Histochem Cytochem 34: 855–867

    Google Scholar 

  7. Callow JA (1984) Cellular and molecular recognition between higher plants and fungal pathogens. In: Linskens HF, Heslop-Harrison J (ed) Cellular interactions. Springer, Berlin Heidelberg New York, pp. 212–237 [Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, n s, vol 17]

    Google Scholar 

  8. Cresti M, Keijzer CJ, Tiezzi A, Ciampolini, F, Focardi S (1986) Stigma ofNicotiana: ultrastructural and biochemical studies. Amer J Bot 73: 1713–1722

    Google Scholar 

  9. Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors: a defence against microbial infection in plants. Annu Rev Plant Physiol 34: 243–298

    Google Scholar 

  10. —, Albersheim P, McNeil M, Lau JM, York WS, Stevenson TT, Thomas J, Doares S, Gollin DJ, Chelf P, Davis K (1985) Structure and function of plant cell wall polysaccharides. In: Roberts K, Johnston AWB, Lloyd CW, Shaw P, Woolhouse HW (ed) The cell surface in plant growth and development. The Company of Biologists, Cambridge, pp 203–217 (J Cell Sci [Suppl 2])

    Google Scholar 

  11. Edgar LA, Pickett-Heaps JD (1982) Ultrastructural localisation of polysaccharides in the motile diatomNavicula cuspidata. Protoplasma 113: 10–22

    Google Scholar 

  12. Ellinger A, Pavelka M (1985) Post embedding localization of glycoconjugates by means of lectins on thin sections of tissues embedded in LR white. Histochem J 17: 1321–1336

    Google Scholar 

  13. Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  14. Frens G (1973) Controlled nucleation of the regulation of particle size in monodisperse gold solutions. Nature Phys Sci 241: 20–27

    Google Scholar 

  15. Hahn MG, Darvill AG, Albersheim P (1981) Host pathogen interactions XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide, that elicits phytoalexin accumulation in soy beans. Plant Physiol 68: 1161–1169

    Google Scholar 

  16. Jacob SR, Northcote DH (1985) In vitro glucan synthesis by membranes of celery petioles: the role of membrane in determining the type of linkage formed. In: Roberts K, Johnston AWB, Lloyd CW, Shaw P, Woolhouse HW (ed) The cell surface in plant growth and development. The Company of Biologists, Cambridge, pp 1–12 (J Cell Sci [Suppl 2])

    Google Scholar 

  17. Johnston CR, Watson L (1976) Microhairs: a universal characteristic of non-festucoid grass genera? Phytomorphology 26: 297–301

    Google Scholar 

  18. Kandasami MK, Kristen U (1987) Developmental aspects of ultrastructure, histochemistry and receptivity of the stigma ofNicotiana sylvestris. Ann Bot 60: 427–437

    Google Scholar 

  19. Kristen U, Lockhausen J (1985) The leaf glands ofVeronica beccabunga L.: ultrastructure and a possible path way of secretion. Israel J Bot 34: 147–156

    Google Scholar 

  20. —, Liebezeit G, Biedmann M (1982) The ligule ofIsoetes lacustris: ultrastructure, mucilage composition, and a possible pathway of secretion. Ann Bot 9: 569–584

    Google Scholar 

  21. Levering CA, Thomson MW (1971) The ultrastructure of the salt gland ofSpartina foliosa. Planta 97: 183–196

    Google Scholar 

  22. - Thomson WW (1972) Studies on the ultrastructure and mechanism of secretion of the salt gland of the grassSpartina. In: Proc 30th Electron Microsc Soc Amer, pp 222–223

  23. Lewis PR, Knight DP (1977) Staining methods for sectioned material. In: Glauert AM (ed) Practical methods in electron microscopy, North-Holland, Amsterdam pp 77–135

    Google Scholar 

  24. Liphshitz N, Waisel Y (1974) Existence of salt glands in various genera of Gramineae. New Phytol 73: 507–513

    Google Scholar 

  25. — (1982) Adaptation of plants to saline environments: salt excretion and glandular structure. In: Sen DN, Rajpurohit KS (ed) Contributions to the ecology of halophytes. W Junk, The Hague, pp 197–214 (Tasks Veg Sci, vol 2)

    Google Scholar 

  26. —, Shomer-Ilan A, Eshel A, Waisel Y (1974) Salt glands on leaves of Rhodes grass (Chloris gayana Kunth). Ann Bot. 38: 459–462

    Google Scholar 

  27. Lockhausen J, Kristen U (1986) Dictyosome endoplasmic reticulum associations in the gland cells ofVeronica beccabunga. Eur J Cell Biol 42: 328–331

    Google Scholar 

  28. Metcalfe CR (1960) Anatomy of the monocotyledons, 1, Gramineae. Oxford, Clarendon

    Google Scholar 

  29. Moore PJ, Staehelin LA (1988) Immunological localization of cell wall matrix polysaccharides, rhamnogalactouranan 1 and xyloglucanan during cell expansion and cytokinensis inTrifolium pratense L.; implications for secretory pathways. Planta 174: 433–445

    Google Scholar 

  30. Northcote DH (1985) Control of cell wall formation during growth. In: Brett CT, Hillman JR (ed) Biochemistry of plant cell walls. Cambridge University Press, Cambridge, pp 177–197 (Soc Biol, seminar series 28)

    Google Scholar 

  31. O'Brien TP, McCully ME (1981) The study plant structure: principles and selected methods. Termacarphi Pty, Melbourne

    Google Scholar 

  32. Oross JW, Thomson WW (1982 a) The ultrastructure of salt glands ofCynodon andDistichlis (Poaceae). Amer J Bot 69: 939–949

    Google Scholar 

  33. — — (1982 b) The ultrastructure of theCynodon salt gland: apoplast. Eur J Bot 28: 257–263

    Google Scholar 

  34. — — (1984) The ultrastructure ofCynodon salt glands: secretory and non secretory. Eur J Cell Biol 34: 287–291

    Google Scholar 

  35. —, Leonard RT, Thomson WW (1985) Flux rate and a secretion model for salt glands of grasses. Israel J Bot 34: 69–77

    Google Scholar 

  36. Pickett-Heaps JD (1968) Further ultrastructural observations on polysaccharide localization in plant cells. J Cell Sci 3: 55–64

    Google Scholar 

  37. Pollak G, Waisel Y (1970) Salt secretion inAeluropus littoralis (Willd.) Parl. Ann Bot 34: 879–888

    Google Scholar 

  38. Prat H (1936) La systematique des Graminees. Ann Sci Nat 10 ser 18: 165–258

    Google Scholar 

  39. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17: 208–212

    Google Scholar 

  40. Roberts K, Grief C, Hills GJ, Shaw PJ (1985) Cell wall glycoproteins: structure and function. In: Roberts K, Johnston AWB, Lloyd CW, Shaw P, Woolhouse HW (ed) The cell surface in plant growth and development. The Company of Biologists, Cambridge, pp 105–127 (J Cell Sci [Suppl 2])

    Google Scholar 

  41. Roth J (1983) Application of lectin gold complexes for electron microscopic localization of glycoconjugates in thin sections. J Histochem Cytochem 31: 987–999

    Google Scholar 

  42. Rougier M (1981) Secretory activity of the root cap. In: Tanner W, Loewus FA (ed) Plant carbohydrates II. Springer, Berlin Heidelberg New York, pp 542–574 [Pirson A, Zimmermann MA (eds) Encyclopedia of plant physiology, n s, vol 13 B]

    Google Scholar 

  43. Scholz H (1979) Bottle like microhairs in the genusPanicum (Gramineae). Willdenowia 8: 511–515

    Google Scholar 

  44. Skelding AD, Winterbotham J (1939) The structure and development of hydathodes ofSpartina townsendii Groves. New Phytol 38: 69–79

    Google Scholar 

  45. Smith GS, Johnston CM, Cornforth IS (1983) Comparison of nutrient solutions for growth of plants in sand culture. New Phytol 94: 537–548

    Google Scholar 

  46. Sterling TM, Houtz RL, Putnam AR (1987) Phytotoxic exudates from velvet leaf (Abutilon theophrasti) glandular trichomes. Amer J Bot 74: 543–550

    Google Scholar 

  47. Takeoka Y (1976) Histogenesis of the lemma in Japonica paddy rice. Proc Crop Sci Soc Jpn 45: 569–581

    Google Scholar 

  48. Tateoka T, Takagi Y (1967) Notes on some grasses XIX: systematic significance of microhairs of the lodicule epidermis. Bot Mag Tokyo 80: 394–403

    Google Scholar 

  49. —, Inoue S, Kawano S (1959) Notes on some grasses IX: systematic significance of bicellular microhairs of the leaf epidermis. Bot Gaz 121: 80–91

    Google Scholar 

  50. Tekel EE, Wergin WP (1981) Epidermal features and silica deposition in lemmas and awns ofZizania (Gramineae). Amer J Bot 68: 697–707

    Google Scholar 

  51. Trachentberg S (1984) Cytochemical and morphological evidence for the involvement of the plasma membrane and plastids in mucilage secretion inAloe arborescens. Ann Bot 53: 227–236

    Google Scholar 

  52. Watson L, Dallwitz M (1988) Grass genera of the world: illustrations of characters, classification, interactive identification, information retrieval. Research School of Biological Sciences, Australian National University, Canberra

    Google Scholar 

  53. — —, Johnston CR (1986) Grass genera of the world: 728 detailed descriptions from an automated database. Aust J Bot 34: 223–230

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vindhya Amarasinghe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amarasinghe, V. Polysaccharide and protein secretion by grass microhairs. Protoplasma 156, 45–56 (1990). https://doi.org/10.1007/BF01666505

Download citation

Keywords

  • Cytochemistry
  • Grasses
  • Microhairs
  • Partitioning membranes
  • Polysaccharides
  • Ultrastructure