Protoplasma

, Volume 156, Issue 1–2, pp 45–56 | Cite as

Polysaccharide and protein secretion by grass microhairs

A cytochemical study at light and electron microscopic levels
  • Vindhya Amarasinghe
Article

Summary

Secretory activities of bicellular microhairs from grasses belonging to the subfamilies Chloridoideae, Arundinoideae, Panicoideae, and Bambusoideae, and including the “chloridoid”, “panicoid” and “Enneapogon” microhair morphological types, have been investigated. Light microscopic histochemistry indicated that all microhairs studied secrete polysaccharide and protein (or glycoprotein), including those which also secrete salt. Localization of polysaccharide at ultrastructural level using periodic acid-thiocarbohydrazidesilver proteinate staining revealed that in “panicoid type” microhairs dictyosomes are involved in polysaccharide secretion, whereas in the “chloridoid” and “Enneapogon” types “partitioning membranes” seem to be involved instead.

Keywords

Cytochemistry Grasses Microhairs Partitioning membranes Polysaccharides Ultrastructure 

Abbreviations

Ag

silver precipitates representing localization of polysaccharide

BC

basal cell

C

cuticle

CC

cap cell

CH

cuticular chamber

CN

system of membrane bound channels and vesicles

CP

chloroplast

CW

cell wall

D

dictyosomes

M

mitochondria

N

nucleus

PTM

partitioning membranes

RER

rough endoplasmic reticulum

S

secretory material

St

starch grain

US

unstained dictyosome cisternae

V

vesicle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albersheim P, Darvill AG, Sharp KJ, Davis K, Doares SH (1986) Studies on the role of carbohydrates in host-microbe interactions. In: Lugtenberg B (ed) Recognition in microbe-plant symbiotic and pathogenic interactions. Springer, Berlin Heidelberg New York Tokyo.Google Scholar
  2. Amarasinghe V (1988) Comparative ultrastructure, function and taxonomic significance of microhairs in grasses. PhD thesis, Australian National UniversityGoogle Scholar
  3. —, Watson L (1988) Comparative ultrastructure of microhairs in grasses. Bot J Lin Soc 98: 303–319Google Scholar
  4. — — (1989) Variation in salt secretory activity of microhairs in grasses. Aust J Plant Physiol 16: 219–229Google Scholar
  5. Behnke O, Zelander T (1970) Preservation of intercellular substances by the cationic dye Alcian blue for preparative procedures for electron microscopy. J Ultrastruct Res 31: 424–438Google Scholar
  6. Benhamou N, Ouellette GB (1986) Ultrastructural localization of glycoconjugates in the fungusAsolyx abietina, the scleroderris canker agent of conifers, using lectin-gold complexes. J Histochem Cytochem 34: 855–867Google Scholar
  7. Callow JA (1984) Cellular and molecular recognition between higher plants and fungal pathogens. In: Linskens HF, Heslop-Harrison J (ed) Cellular interactions. Springer, Berlin Heidelberg New York, pp. 212–237 [Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, n s, vol 17]Google Scholar
  8. Cresti M, Keijzer CJ, Tiezzi A, Ciampolini, F, Focardi S (1986) Stigma ofNicotiana: ultrastructural and biochemical studies. Amer J Bot 73: 1713–1722Google Scholar
  9. Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors: a defence against microbial infection in plants. Annu Rev Plant Physiol 34: 243–298Google Scholar
  10. —, Albersheim P, McNeil M, Lau JM, York WS, Stevenson TT, Thomas J, Doares S, Gollin DJ, Chelf P, Davis K (1985) Structure and function of plant cell wall polysaccharides. In: Roberts K, Johnston AWB, Lloyd CW, Shaw P, Woolhouse HW (ed) The cell surface in plant growth and development. The Company of Biologists, Cambridge, pp 203–217 (J Cell Sci [Suppl 2])Google Scholar
  11. Edgar LA, Pickett-Heaps JD (1982) Ultrastructural localisation of polysaccharides in the motile diatomNavicula cuspidata. Protoplasma 113: 10–22Google Scholar
  12. Ellinger A, Pavelka M (1985) Post embedding localization of glycoconjugates by means of lectins on thin sections of tissues embedded in LR white. Histochem J 17: 1321–1336Google Scholar
  13. Fahn A (1979) Secretory tissues in plants. Academic Press, LondonGoogle Scholar
  14. Frens G (1973) Controlled nucleation of the regulation of particle size in monodisperse gold solutions. Nature Phys Sci 241: 20–27Google Scholar
  15. Hahn MG, Darvill AG, Albersheim P (1981) Host pathogen interactions XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide, that elicits phytoalexin accumulation in soy beans. Plant Physiol 68: 1161–1169Google Scholar
  16. Jacob SR, Northcote DH (1985) In vitro glucan synthesis by membranes of celery petioles: the role of membrane in determining the type of linkage formed. In: Roberts K, Johnston AWB, Lloyd CW, Shaw P, Woolhouse HW (ed) The cell surface in plant growth and development. The Company of Biologists, Cambridge, pp 1–12 (J Cell Sci [Suppl 2])Google Scholar
  17. Johnston CR, Watson L (1976) Microhairs: a universal characteristic of non-festucoid grass genera? Phytomorphology 26: 297–301Google Scholar
  18. Kandasami MK, Kristen U (1987) Developmental aspects of ultrastructure, histochemistry and receptivity of the stigma ofNicotiana sylvestris. Ann Bot 60: 427–437Google Scholar
  19. Kristen U, Lockhausen J (1985) The leaf glands ofVeronica beccabunga L.: ultrastructure and a possible path way of secretion. Israel J Bot 34: 147–156Google Scholar
  20. —, Liebezeit G, Biedmann M (1982) The ligule ofIsoetes lacustris: ultrastructure, mucilage composition, and a possible pathway of secretion. Ann Bot 9: 569–584Google Scholar
  21. Levering CA, Thomson MW (1971) The ultrastructure of the salt gland ofSpartina foliosa. Planta 97: 183–196Google Scholar
  22. - Thomson WW (1972) Studies on the ultrastructure and mechanism of secretion of the salt gland of the grassSpartina. In: Proc 30th Electron Microsc Soc Amer, pp 222–223Google Scholar
  23. Lewis PR, Knight DP (1977) Staining methods for sectioned material. In: Glauert AM (ed) Practical methods in electron microscopy, North-Holland, Amsterdam pp 77–135Google Scholar
  24. Liphshitz N, Waisel Y (1974) Existence of salt glands in various genera of Gramineae. New Phytol 73: 507–513Google Scholar
  25. — (1982) Adaptation of plants to saline environments: salt excretion and glandular structure. In: Sen DN, Rajpurohit KS (ed) Contributions to the ecology of halophytes. W Junk, The Hague, pp 197–214 (Tasks Veg Sci, vol 2)Google Scholar
  26. —, Shomer-Ilan A, Eshel A, Waisel Y (1974) Salt glands on leaves of Rhodes grass (Chloris gayana Kunth). Ann Bot. 38: 459–462Google Scholar
  27. Lockhausen J, Kristen U (1986) Dictyosome endoplasmic reticulum associations in the gland cells ofVeronica beccabunga. Eur J Cell Biol 42: 328–331Google Scholar
  28. Metcalfe CR (1960) Anatomy of the monocotyledons, 1, Gramineae. Oxford, ClarendonGoogle Scholar
  29. Moore PJ, Staehelin LA (1988) Immunological localization of cell wall matrix polysaccharides, rhamnogalactouranan 1 and xyloglucanan during cell expansion and cytokinensis inTrifolium pratense L.; implications for secretory pathways. Planta 174: 433–445Google Scholar
  30. Northcote DH (1985) Control of cell wall formation during growth. In: Brett CT, Hillman JR (ed) Biochemistry of plant cell walls. Cambridge University Press, Cambridge, pp 177–197 (Soc Biol, seminar series 28)Google Scholar
  31. O'Brien TP, McCully ME (1981) The study plant structure: principles and selected methods. Termacarphi Pty, MelbourneGoogle Scholar
  32. Oross JW, Thomson WW (1982 a) The ultrastructure of salt glands ofCynodon andDistichlis (Poaceae). Amer J Bot 69: 939–949Google Scholar
  33. — — (1982 b) The ultrastructure of theCynodon salt gland: apoplast. Eur J Bot 28: 257–263Google Scholar
  34. — — (1984) The ultrastructure ofCynodon salt glands: secretory and non secretory. Eur J Cell Biol 34: 287–291Google Scholar
  35. —, Leonard RT, Thomson WW (1985) Flux rate and a secretion model for salt glands of grasses. Israel J Bot 34: 69–77Google Scholar
  36. Pickett-Heaps JD (1968) Further ultrastructural observations on polysaccharide localization in plant cells. J Cell Sci 3: 55–64Google Scholar
  37. Pollak G, Waisel Y (1970) Salt secretion inAeluropus littoralis (Willd.) Parl. Ann Bot 34: 879–888Google Scholar
  38. Prat H (1936) La systematique des Graminees. Ann Sci Nat 10 ser 18: 165–258Google Scholar
  39. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17: 208–212Google Scholar
  40. Roberts K, Grief C, Hills GJ, Shaw PJ (1985) Cell wall glycoproteins: structure and function. In: Roberts K, Johnston AWB, Lloyd CW, Shaw P, Woolhouse HW (ed) The cell surface in plant growth and development. The Company of Biologists, Cambridge, pp 105–127 (J Cell Sci [Suppl 2])Google Scholar
  41. Roth J (1983) Application of lectin gold complexes for electron microscopic localization of glycoconjugates in thin sections. J Histochem Cytochem 31: 987–999Google Scholar
  42. Rougier M (1981) Secretory activity of the root cap. In: Tanner W, Loewus FA (ed) Plant carbohydrates II. Springer, Berlin Heidelberg New York, pp 542–574 [Pirson A, Zimmermann MA (eds) Encyclopedia of plant physiology, n s, vol 13 B]Google Scholar
  43. Scholz H (1979) Bottle like microhairs in the genusPanicum (Gramineae). Willdenowia 8: 511–515Google Scholar
  44. Skelding AD, Winterbotham J (1939) The structure and development of hydathodes ofSpartina townsendii Groves. New Phytol 38: 69–79Google Scholar
  45. Smith GS, Johnston CM, Cornforth IS (1983) Comparison of nutrient solutions for growth of plants in sand culture. New Phytol 94: 537–548Google Scholar
  46. Sterling TM, Houtz RL, Putnam AR (1987) Phytotoxic exudates from velvet leaf (Abutilon theophrasti) glandular trichomes. Amer J Bot 74: 543–550Google Scholar
  47. Takeoka Y (1976) Histogenesis of the lemma in Japonica paddy rice. Proc Crop Sci Soc Jpn 45: 569–581Google Scholar
  48. Tateoka T, Takagi Y (1967) Notes on some grasses XIX: systematic significance of microhairs of the lodicule epidermis. Bot Mag Tokyo 80: 394–403Google Scholar
  49. —, Inoue S, Kawano S (1959) Notes on some grasses IX: systematic significance of bicellular microhairs of the leaf epidermis. Bot Gaz 121: 80–91Google Scholar
  50. Tekel EE, Wergin WP (1981) Epidermal features and silica deposition in lemmas and awns ofZizania (Gramineae). Amer J Bot 68: 697–707Google Scholar
  51. Trachentberg S (1984) Cytochemical and morphological evidence for the involvement of the plasma membrane and plastids in mucilage secretion inAloe arborescens. Ann Bot 53: 227–236Google Scholar
  52. Watson L, Dallwitz M (1988) Grass genera of the world: illustrations of characters, classification, interactive identification, information retrieval. Research School of Biological Sciences, Australian National University, CanberraGoogle Scholar
  53. — —, Johnston CR (1986) Grass genera of the world: 728 detailed descriptions from an automated database. Aust J Bot 34: 223–230Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Vindhya Amarasinghe
    • 1
  1. 1.Research School of Biological SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations